k8s daemonset controller源码分析
2021/12/23 9:07:20
本文主要是介绍k8s daemonset controller源码分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
daemonset controller分析
daemonset controller简介
daemonset controller是kube-controller-manager组件中众多控制器中的一个,是 daemonset 资源对象的控制器,其通过对daemonset、pod、node、ControllerRevision四种资源的监听,当这四种资源发生变化时会触发 daemonset controller 对相应的daemonset资源进行调谐操作,从而完成daemonset在合适node上pod的创建、在不合适node上pod的删除、daemonset的滚动更新、daemonset状态status更新、旧版本daemonset清理等操作。
daemonset controller架构图
daemonset controller的大致组成和处理流程如下图,daemonset controller对daemonset、pod、node、ControllerRevision对象注册了event handler,当有事件时,会watch到然后将对应的daemonset对象放入到queue中,然后syncDaemonset
方法为daemonset controller调谐daemonset对象的核心处理逻辑所在,从queue中取出daemonset对象,做调谐处理。
daemonset更新策略
(1)OnDelete:使用 OnDelete 更新策略时,在更新 DaemonSet pod模板后,只有当你手动删除老的 DaemonSet pods 之后,新的 DaemonSet Pod 才会被自动创建。
(2)RollingUpdate:默认的更新策略。使用 RollingUpdate 更新策略时,在更新 DaemonSet pod模板后, 老的 DaemonSet pods 将被删除,并且将根据滚动更新配置自动创建新的 DaemonSet pods。 滚动更新期间,最多只能有 DaemonSet 的一个 Pod 运行于每个节点上。
daemonset controller分析将分为两大块进行,分别是:
(1)daemonset controller初始化与启动分析;
(2)daemonset controller处理逻辑分析。
1.daemonset controller初始化与启动分析
基于tag v1.17.4
https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4
直接看到startDaemonSetController函数,作为daemonset controller初始化与启动分析的入口。
startDaemonSetController
startDaemonSetController主要逻辑:
(1)调用daemon.NewDaemonSetsController新建并初始化DaemonSetsController;
(2)拉起一个goroutine,跑DaemonSetsController的Run方法。
// cmd/kube-controller-manager/app/apps.go func startDaemonSetController(ctx ControllerContext) (http.Handler, bool, error) { if !ctx.AvailableResources[schema.GroupVersionResource{Group: "apps", Version: "v1", Resource: "daemonsets"}] { return nil, false, nil } dsc, err := daemon.NewDaemonSetsController( ctx.InformerFactory.Apps().V1().DaemonSets(), ctx.InformerFactory.Apps().V1().ControllerRevisions(), ctx.InformerFactory.Core().V1().Pods(), ctx.InformerFactory.Core().V1().Nodes(), ctx.ClientBuilder.ClientOrDie("daemon-set-controller"), flowcontrol.NewBackOff(1*time.Second, 15*time.Minute), ) if err != nil { return nil, true, fmt.Errorf("error creating DaemonSets controller: %v", err) } go dsc.Run(int(ctx.ComponentConfig.DaemonSetController.ConcurrentDaemonSetSyncs), ctx.Stop) return nil, true, nil }
1.1 daemon.NewDaemonSetsController
从daemon.NewDaemonSetsController
函数代码中可以看到,daemonset controller注册了daemonset、node、pod与ControllerRevisions对象的EventHandler,也即对这几个对象的event进行监听,把event放入事件队列并做处理。并且将dsc.syncDaemonSet
方法赋值给dsc.syncHandler
,也即注册为核心处理方法,在dsc.Run
方法中会调用该核心处理方法来调谐daemonset对象(核心处理方法后面会进行详细分析)。
// pkg/controller/daemon/daemon_controller.go func NewDaemonSetsController( daemonSetInformer appsinformers.DaemonSetInformer, historyInformer appsinformers.ControllerRevisionInformer, podInformer coreinformers.PodInformer, nodeInformer coreinformers.NodeInformer, kubeClient clientset.Interface, failedPodsBackoff *flowcontrol.Backoff, ) (*DaemonSetsController, error) { eventBroadcaster := record.NewBroadcaster() eventBroadcaster.StartLogging(klog.Infof) eventBroadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: kubeClient.CoreV1().Events("")}) if kubeClient != nil && kubeClient.CoreV1().RESTClient().GetRateLimiter() != nil { if err := ratelimiter.RegisterMetricAndTrackRateLimiterUsage("daemon_controller", kubeClient.CoreV1().RESTClient().GetRateLimiter()); err != nil { return nil, err } } dsc := &DaemonSetsController{ kubeClient: kubeClient, eventRecorder: eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "daemonset-controller"}), podControl: controller.RealPodControl{ KubeClient: kubeClient, Recorder: eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "daemonset-controller"}), }, crControl: controller.RealControllerRevisionControl{ KubeClient: kubeClient, }, burstReplicas: BurstReplicas, expectations: controller.NewControllerExpectations(), queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "daemonset"), } daemonSetInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { ds := obj.(*apps.DaemonSet) klog.V(4).Infof("Adding daemon set %s", ds.Name) dsc.enqueueDaemonSet(ds) }, UpdateFunc: func(old, cur interface{}) { oldDS := old.(*apps.DaemonSet) curDS := cur.(*apps.DaemonSet) klog.V(4).Infof("Updating daemon set %s", oldDS.Name) dsc.enqueueDaemonSet(curDS) }, DeleteFunc: dsc.deleteDaemonset, }) dsc.dsLister = daemonSetInformer.Lister() dsc.dsStoreSynced = daemonSetInformer.Informer().HasSynced historyInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: dsc.addHistory, UpdateFunc: dsc.updateHistory, DeleteFunc: dsc.deleteHistory, }) dsc.historyLister = historyInformer.Lister() dsc.historyStoreSynced = historyInformer.Informer().HasSynced // Watch for creation/deletion of pods. The reason we watch is that we don't want a daemon set to create/delete // more pods until all the effects (expectations) of a daemon set's create/delete have been observed. podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: dsc.addPod, UpdateFunc: dsc.updatePod, DeleteFunc: dsc.deletePod, }) dsc.podLister = podInformer.Lister() // This custom indexer will index pods based on their NodeName which will decrease the amount of pods we need to get in simulate() call. podInformer.Informer().GetIndexer().AddIndexers(cache.Indexers{ "nodeName": indexByPodNodeName, }) dsc.podNodeIndex = podInformer.Informer().GetIndexer() dsc.podStoreSynced = podInformer.Informer().HasSynced nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: dsc.addNode, UpdateFunc: dsc.updateNode, }, ) dsc.nodeStoreSynced = nodeInformer.Informer().HasSynced dsc.nodeLister = nodeInformer.Lister() dsc.syncHandler = dsc.syncDaemonSet dsc.enqueueDaemonSet = dsc.enqueue dsc.failedPodsBackoff = failedPodsBackoff return dsc, nil }
1.2 dsc.Run
主要看到for循环处,根据workers的值(默认值为2),启动相应数量的goroutine,跑dsc.runWorker
方法,主要是调用前面讲到的daemonset controller核心处理方法dsc.syncDaemonSet
。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) Run(workers int, stopCh <-chan struct{}) { defer utilruntime.HandleCrash() defer dsc.queue.ShutDown() klog.Infof("Starting daemon sets controller") defer klog.Infof("Shutting down daemon sets controller") if !cache.WaitForNamedCacheSync("daemon sets", stopCh, dsc.podStoreSynced, dsc.nodeStoreSynced, dsc.historyStoreSynced, dsc.dsStoreSynced) { return } for i := 0; i < workers; i++ { go wait.Until(dsc.runWorker, time.Second, stopCh) } go wait.Until(dsc.failedPodsBackoff.GC, BackoffGCInterval, stopCh) <-stopCh }
1.2.1 dsc.runWorker
从queue队列中取出事件key,并调用dsc.syncHandle
即dsc.syncDaemonSet
做调谐处理。queue队列里的事件来源前面讲过,是daemonset controller注册的daemonset、node、pod与ControllerRevisions对象的EventHandler,它们的变化event会被监听到然后放入queue中。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) runWorker() { for dsc.processNextWorkItem() { } } func (dsc *DaemonSetsController) processNextWorkItem() bool { dsKey, quit := dsc.queue.Get() if quit { return false } defer dsc.queue.Done(dsKey) err := dsc.syncHandler(dsKey.(string)) if err == nil { dsc.queue.Forget(dsKey) return true } utilruntime.HandleError(fmt.Errorf("%v failed with : %v", dsKey, err)) dsc.queue.AddRateLimited(dsKey) return true }
2.daemonset controller核心处理逻辑分析
syncDaemonSet
直接看到daemonset controller核心处理方法syncDaemonSet。
主要逻辑:
(1)获取执行方法时的当前时间,并定义defer
函数,用于计算该方法总执行时间,也即统计对一个 daemonset 进行同步调谐操作的耗时;
(2)根据 daemonset 对象的命名空间与名称,获取 daemonset 对象;
(3)获取所有node的对象列表;
(4)判断daemonset对象的DeletionTimestamp是否为空,不为空则直接return,代表该daemonset对象正在被删除,无需再调谐;
(5)调用dsc.constructHistory获取daemonset的历史版本;
(6)调用dsc.expectations.SatisfiedExpectations,判断该daemonset对象是否满足expectations机制(expectations机制与replicaset controller分析中的用途一致,这里不再展开分析),不满足则调用dsc.updateDaemonSetStatus更新daemonset状态后直接return;
(7)调用dsc.manage,dsc.manage方法中不区分新旧daemonset版本的pod,只保证daemonset的pod运行在每一个合适条件的node上,在合适的node上没有daemonset的pod时创建pod,且把不符合条件的node上的daemonset pod删除掉;
(8)再次调用dsc.expectations.SatisfiedExpectations判断是否满足expectations机制,满足则判断daemonset配置的更新策略,如果是滚动更新则调用dsc.rollingUpdate,主要用于处理daemonset对象的滚动更新处理,根据配置的滚动更新配置,删除旧的pod(pod的创建操作在dsc.manage方法中进行);
当daemonset更新策略配置为OnDelete时,这里不做额外处理,因为只有当手动删除老的 DaemonSet pods 之后,新的 DaemonSet Pod 才会被自动创建,手动删除老的pod后,将在dsc.manage方法中创建新版本的pod;
(9)调用dsc.cleanupHistory,根据daemonset的spec.revisionHistoryLimit
配置以及版本新旧顺序(优先清理最老旧版本)来清理daemonset的已经不存在pod的历史版本;
(10)最后调用dsc.updateDaemonSetStatus,根据现存daemonset pod的部署情况以及pod的状态、node是否满足pod运行条件等信息,更新daemonset的status。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) syncDaemonSet(key string) error { startTime := time.Now() defer func() { klog.V(4).Infof("Finished syncing daemon set %q (%v)", key, time.Since(startTime)) }() namespace, name, err := cache.SplitMetaNamespaceKey(key) if err != nil { return err } ds, err := dsc.dsLister.DaemonSets(namespace).Get(name) if errors.IsNotFound(err) { klog.V(3).Infof("daemon set has been deleted %v", key) dsc.expectations.DeleteExpectations(key) return nil } if err != nil { return fmt.Errorf("unable to retrieve ds %v from store: %v", key, err) } nodeList, err := dsc.nodeLister.List(labels.Everything()) if err != nil { return fmt.Errorf("couldn't get list of nodes when syncing daemon set %#v: %v", ds, err) } everything := metav1.LabelSelector{} if reflect.DeepEqual(ds.Spec.Selector, &everything) { dsc.eventRecorder.Eventf(ds, v1.EventTypeWarning, SelectingAllReason, "This daemon set is selecting all pods. A non-empty selector is required.") return nil } // Don't process a daemon set until all its creations and deletions have been processed. // For example if daemon set foo asked for 3 new daemon pods in the previous call to manage, // then we do not want to call manage on foo until the daemon pods have been created. dsKey, err := controller.KeyFunc(ds) if err != nil { return fmt.Errorf("couldn't get key for object %#v: %v", ds, err) } // If the DaemonSet is being deleted (either by foreground deletion or // orphan deletion), we cannot be sure if the DaemonSet history objects // it owned still exist -- those history objects can either be deleted // or orphaned. Garbage collector doesn't guarantee that it will delete // DaemonSet pods before deleting DaemonSet history objects, because // DaemonSet history doesn't own DaemonSet pods. We cannot reliably // calculate the status of a DaemonSet being deleted. Therefore, return // here without updating status for the DaemonSet being deleted. if ds.DeletionTimestamp != nil { return nil } // Construct histories of the DaemonSet, and get the hash of current history cur, old, err := dsc.constructHistory(ds) if err != nil { return fmt.Errorf("failed to construct revisions of DaemonSet: %v", err) } hash := cur.Labels[apps.DefaultDaemonSetUniqueLabelKey] if !dsc.expectations.SatisfiedExpectations(dsKey) { // Only update status. Don't raise observedGeneration since controller didn't process object of that generation. return dsc.updateDaemonSetStatus(ds, nodeList, hash, false) } err = dsc.manage(ds, nodeList, hash) if err != nil { return err } // Process rolling updates if we're ready. if dsc.expectations.SatisfiedExpectations(dsKey) { switch ds.Spec.UpdateStrategy.Type { case apps.OnDeleteDaemonSetStrategyType: case apps.RollingUpdateDaemonSetStrategyType: err = dsc.rollingUpdate(ds, nodeList, hash) } if err != nil { return err } } err = dsc.cleanupHistory(ds, old) if err != nil { return fmt.Errorf("failed to clean up revisions of DaemonSet: %v", err) } return dsc.updateDaemonSetStatus(ds, nodeList, hash, true) }
2.1 dsc.manage
dsc.manage方法中不区分新旧daemonset版本的pod,主要是用于保证daemonset的pod运行在每一个合适条件的node上,在合适的node上没有daemonset的pod时创建pod,且把不符合条件的node上的daemonset pod删除掉。
主要逻辑:
(1)调用dsc.getNodesToDaemonPods,根据daemonset的Selector获取daemonset的所有pod,然后返回pod与node的对应关联关系map;
(2)遍历前面获取到的node列表,执行dsc.podsShouldBeOnNode,根据pod是否指定了nodeName、nodeSelector、ToleratesNodeTaints等,以及node对象的相关信息来做比对,来确定在某个node上是否已经存在daemonset对应的pod,以及是要为该daemonset创建pod还是删除pod;
(3)调用getUnscheduledPodsWithoutNode,将pod的nodeName与前面获取到的node列表比对,将nodeName不存在的pod加入到要被删除的pod列表中;
(4)调用dsc.syncNodes,根据前面获取到的要创建的pod的node列表以及要删除的pod列表,做相应的创建、删除pod的操作。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) manage(ds *apps.DaemonSet, nodeList []*v1.Node, hash string) error { // Find out the pods which are created for the nodes by DaemonSet. nodeToDaemonPods, err := dsc.getNodesToDaemonPods(ds) if err != nil { return fmt.Errorf("couldn't get node to daemon pod mapping for daemon set %q: %v", ds.Name, err) } // For each node, if the node is running the daemon pod but isn't supposed to, kill the daemon // pod. If the node is supposed to run the daemon pod, but isn't, create the daemon pod on the node. var nodesNeedingDaemonPods, podsToDelete []string for _, node := range nodeList { nodesNeedingDaemonPodsOnNode, podsToDeleteOnNode, err := dsc.podsShouldBeOnNode( node, nodeToDaemonPods, ds) if err != nil { continue } nodesNeedingDaemonPods = append(nodesNeedingDaemonPods, nodesNeedingDaemonPodsOnNode...) podsToDelete = append(podsToDelete, podsToDeleteOnNode...) } // Remove unscheduled pods assigned to not existing nodes when daemonset pods are scheduled by scheduler. // If node doesn't exist then pods are never scheduled and can't be deleted by PodGCController. podsToDelete = append(podsToDelete, getUnscheduledPodsWithoutNode(nodeList, nodeToDaemonPods)...) // Label new pods using the hash label value of the current history when creating them if err = dsc.syncNodes(ds, podsToDelete, nodesNeedingDaemonPods, hash); err != nil { return err } return nil }
2.1.1 dsc.podsShouldBeOnNode
dsc.podsShouldBeOnNode方法用于判断一个node上是否需要运行daemonset pod,方法返回nodesNeedingDaemonPods与podsToDelete,分别代表需要运行daemonset pod的node、需要被删除的pod列表。
主要逻辑:
(1)调用dsc.nodeShouldRunDaemonPod,返回shouldSchedule与shouldContinueRunning,分别代表daemonset pod是否应该调度到某node、某node上的daemonset pod是否可以继续运行;
(2)当shouldSchedule为true,即pod应该调度到某node,但现在不存在时,将该node添加到nodesNeedingDaemonPods;
(3)当shouldContinueRunning为true,找出在该node上还在运行没有退出的daemonset pod列表,然后按照pod创建时间排序,只保留最新创建的pod,其余的加入到podsToDelete;
(4)当shouldContinueRunning为false,即daemonset pod不应继续在某node上运行,且现在该node已经存在该daemonset pod时,将node上该daemonset的所有pod都加入到podsToDelete;
(5)返回nodesNeedingDaemonPods与podsToDelete,分别代表需要运行daemonset pod的node、需要被删除的pod列表。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) podsShouldBeOnNode( node *v1.Node, nodeToDaemonPods map[string][]*v1.Pod, ds *apps.DaemonSet, ) (nodesNeedingDaemonPods, podsToDelete []string, err error) { _, shouldSchedule, shouldContinueRunning, err := dsc.nodeShouldRunDaemonPod(node, ds) if err != nil { return } daemonPods, exists := nodeToDaemonPods[node.Name] switch { case shouldSchedule && !exists: // If daemon pod is supposed to be running on node, but isn't, create daemon pod. nodesNeedingDaemonPods = append(nodesNeedingDaemonPods, node.Name) case shouldContinueRunning: // If a daemon pod failed, delete it // If there's non-daemon pods left on this node, we will create it in the next sync loop var daemonPodsRunning []*v1.Pod for _, pod := range daemonPods { if pod.DeletionTimestamp != nil { continue } if pod.Status.Phase == v1.PodFailed { // This is a critical place where DS is often fighting with kubelet that rejects pods. // We need to avoid hot looping and backoff. backoffKey := failedPodsBackoffKey(ds, node.Name) now := dsc.failedPodsBackoff.Clock.Now() inBackoff := dsc.failedPodsBackoff.IsInBackOffSinceUpdate(backoffKey, now) if inBackoff { delay := dsc.failedPodsBackoff.Get(backoffKey) klog.V(4).Infof("Deleting failed pod %s/%s on node %s has been limited by backoff - %v remaining", pod.Namespace, pod.Name, node.Name, delay) dsc.enqueueDaemonSetAfter(ds, delay) continue } dsc.failedPodsBackoff.Next(backoffKey, now) msg := fmt.Sprintf("Found failed daemon pod %s/%s on node %s, will try to kill it", pod.Namespace, pod.Name, node.Name) klog.V(2).Infof(msg) // Emit an event so that it's discoverable to users. dsc.eventRecorder.Eventf(ds, v1.EventTypeWarning, FailedDaemonPodReason, msg) podsToDelete = append(podsToDelete, pod.Name) } else { daemonPodsRunning = append(daemonPodsRunning, pod) } } // If daemon pod is supposed to be running on node, but more than 1 daemon pod is running, delete the excess daemon pods. // Sort the daemon pods by creation time, so the oldest is preserved. if len(daemonPodsRunning) > 1 { sort.Sort(podByCreationTimestampAndPhase(daemonPodsRunning)) for i := 1; i < len(daemonPodsRunning); i++ { podsToDelete = append(podsToDelete, daemonPodsRunning[i].Name) } } case !shouldContinueRunning && exists: // If daemon pod isn't supposed to run on node, but it is, delete all daemon pods on node. for _, pod := range daemonPods { if pod.DeletionTimestamp != nil { continue } podsToDelete = append(podsToDelete, pod.Name) } } return nodesNeedingDaemonPods, podsToDelete, nil }
dsc.nodeShouldRunDaemonPod
关于dsc.nodeShouldRunDaemonPod方法,不做展开分析,它主要是调用dsc.simulate执行Predicates预选算法来检查某个node 是否满足pod的运行条件,如果预选失败,则根据失败信息,返回wantToRun、shouldSchedule、shouldContinueRunning,分别代表node与pod的selector、taints 等是否匹配(不考虑node资源是否充足)、daemonset pod是否应该调度到某node、某node上的daemonset pod是否可以继续运行,预选成功则全都返回true。
2.1.2 dsc.syncNodes
dsc.syncNodes是daemonset controller对pod进行创建和删除操作的方法。
该方法也涉及到expectations机制,与replicaset controller中的expectations机制作用一致,使用上也基本一致,忘记的可以回头看下replicaset controller分析中对expectations机制的分析,这里不再对expectations机制展开分析。
主要逻辑:
(1)计算要创建、删除pod的数量,上限为dsc.burstReplicas(250),即每一次对daemonset对象的同步操作,能创建/删除的pod数量上限为250,超出的部分需要在下一次同步操作才能进行;
(2)调用dsc.expectations.SetExpectations,设置expectations;
(3)调用util.CreatePodTemplate,计算并获取要创建的podTemplate;
(4)先进行pod的创建操作:pod的创建与replicaset controller创建pod类似,使用了慢开始算法,分多批次进行创建,第一批创建1个pod,第二批创建2个pod,第三批创建4个pod,以2倍往下依次执行,直到达到期望为止;而每一批次的创建,会拉起与要创建pod数量相等的goroutine,每个goroutine负责创建一个pod,并使用WaitGroup等待该批次的所有创建任务完成,再进行下一批次的创建;
(4)再进行pod的删除操作:对于每个要删除的pod,都拉起一个goroutine来做删除操作,并使用WaitGroup等待所有goroutine完成。
// pkg/controller/daemon/daemon_controller.go func (dsc *DaemonSetsController) syncNodes(ds *apps.DaemonSet, podsToDelete, nodesNeedingDaemonPods []string, hash string) error { // We need to set expectations before creating/deleting pods to avoid race conditions. dsKey, err := controller.KeyFunc(ds) if err != nil { return fmt.Errorf("couldn't get key for object %#v: %v", ds, err) } createDiff := len(nodesNeedingDaemonPods) deleteDiff := len(podsToDelete) if createDiff > dsc.burstReplicas { createDiff = dsc.burstReplicas } if deleteDiff > dsc.burstReplicas { deleteDiff = dsc.burstReplicas } dsc.expectations.SetExpectations(dsKey, createDiff, deleteDiff) // error channel to communicate back failures. make the buffer big enough to avoid any blocking errCh := make(chan error, createDiff+deleteDiff) klog.V(4).Infof("Nodes needing daemon pods for daemon set %s: %+v, creating %d", ds.Name, nodesNeedingDaemonPods, createDiff) createWait := sync.WaitGroup{} // If the returned error is not nil we have a parse error. // The controller handles this via the hash. generation, err := util.GetTemplateGeneration(ds) if err != nil { generation = nil } template := util.CreatePodTemplate(ds.Spec.Template, generation, hash) // Batch the pod creates. Batch sizes start at SlowStartInitialBatchSize // and double with each successful iteration in a kind of "slow start". // This handles attempts to start large numbers of pods that would // likely all fail with the same error. For example a project with a // low quota that attempts to create a large number of pods will be // prevented from spamming the API service with the pod create requests // after one of its pods fails. Conveniently, this also prevents the // event spam that those failures would generate. batchSize := integer.IntMin(createDiff, controller.SlowStartInitialBatchSize) for pos := 0; createDiff > pos; batchSize, pos = integer.IntMin(2*batchSize, createDiff-(pos+batchSize)), pos+batchSize { errorCount := len(errCh) createWait.Add(batchSize) for i := pos; i < pos+batchSize; i++ { go func(ix int) { defer createWait.Done() podTemplate := template.DeepCopy() // The pod's NodeAffinity will be updated to make sure the Pod is bound // to the target node by default scheduler. It is safe to do so because there // should be no conflicting node affinity with the target node. podTemplate.Spec.Affinity = util.ReplaceDaemonSetPodNodeNameNodeAffinity( podTemplate.Spec.Affinity, nodesNeedingDaemonPods[ix]) err := dsc.podControl.CreatePodsWithControllerRef(ds.Namespace, podTemplate, ds, metav1.NewControllerRef(ds, controllerKind)) if err != nil { if errors.HasStatusCause(err, v1.NamespaceTerminatingCause) { // If the namespace is being torn down, we can safely ignore // this error since all subsequent creations will fail. return } } if err != nil { klog.V(2).Infof("Failed creation, decrementing expectations for set %q/%q", ds.Namespace, ds.Name) dsc.expectations.CreationObserved(dsKey) errCh <- err utilruntime.HandleError(err) } }(i) } createWait.Wait() // any skipped pods that we never attempted to start shouldn't be expected. skippedPods := createDiff - (batchSize + pos) if errorCount < len(errCh) && skippedPods > 0 { klog.V(2).Infof("Slow-start failure. Skipping creation of %d pods, decrementing expectations for set %q/%q", skippedPods, ds.Namespace, ds.Name) dsc.expectations.LowerExpectations(dsKey, skippedPods, 0) // The skipped pods will be retried later. The next controller resync will // retry the slow start process. break } } klog.V(4).Infof("Pods to delete for daemon set %s: %+v, deleting %d", ds.Name, podsToDelete, deleteDiff) deleteWait := sync.WaitGroup{} deleteWait.Add(deleteDiff) for i := 0; i < deleteDiff; i++ { go func(ix int) { defer deleteWait.Done() if err := dsc.podControl.DeletePod(ds.Namespace, podsToDelete[ix], ds); err != nil { klog.V(2).Infof("Failed deletion, decrementing expectations for set %q/%q", ds.Namespace, ds.Name) dsc.expectations.DeletionObserved(dsKey) errCh <- err utilruntime.HandleError(err) } }(i) } deleteWait.Wait() // collect errors if any for proper reporting/retry logic in the controller errors := []error{} close(errCh) for err := range errCh { errors = append(errors, err) } return utilerrors.NewAggregate(errors) }
2.2 dsc.rollingUpdate
dsc.rollingUpdate方法主要用于处理daemonset对象的滚动更新处理,根据配置的滚动更新配置,删除旧的pod(pod的创建操作在dsc.manage方法中进行)。
主要逻辑:
(1)调用dsc.getNodesToDaemonPods,获取daemonset所属pod与node的对应关联关系map;
(2)调用dsc.getAllDaemonSetPods,获取所有的旧版本daemonset的pod;
(3)调用dsc.getUnavailableNumbers,根据daemonset的滚动更新策略配置获取maxUnavailable值,再获取numUnavailable值,numUnavailable代表在符合条件的node节点中,没有daemonset对应的pod或者pod处于Unavailable状态的node数量;
(4)调用util.SplitByAvailablePods,将旧版本daemonset的所有pod分成oldAvailablePods列表,以及oldUnavailablePods列表;
(5)定义一个字符串数组oldPodsToDelete,用于储存准备要删除的pod;
(6)将全部oldUnavailablePods加入到oldPodsToDelete数组中;
(7)遍历oldAvailablePods列表,当numUnavailable小于maxUnavailable值时,将pod加入到oldPodsToDelete数组中,且numUnavailable值加一;
(8)调用dsc.syncNodes,将oldPodsToDelete数组中的pod删除。
// pkg/controller/daemon/update.go func (dsc *DaemonSetsController) rollingUpdate(ds *apps.DaemonSet, nodeList []*v1.Node, hash string) error { nodeToDaemonPods, err := dsc.getNodesToDaemonPods(ds) if err != nil { return fmt.Errorf("couldn't get node to daemon pod mapping for daemon set %q: %v", ds.Name, err) } _, oldPods := dsc.getAllDaemonSetPods(ds, nodeToDaemonPods, hash) maxUnavailable, numUnavailable, err := dsc.getUnavailableNumbers(ds, nodeList, nodeToDaemonPods) if err != nil { return fmt.Errorf("couldn't get unavailable numbers: %v", err) } oldAvailablePods, oldUnavailablePods := util.SplitByAvailablePods(ds.Spec.MinReadySeconds, oldPods) // for oldPods delete all not running pods var oldPodsToDelete []string klog.V(4).Infof("Marking all unavailable old pods for deletion") for _, pod := range oldUnavailablePods { // Skip terminating pods. We won't delete them again if pod.DeletionTimestamp != nil { continue } klog.V(4).Infof("Marking pod %s/%s for deletion", ds.Name, pod.Name) oldPodsToDelete = append(oldPodsToDelete, pod.Name) } klog.V(4).Infof("Marking old pods for deletion") for _, pod := range oldAvailablePods { if numUnavailable >= maxUnavailable { klog.V(4).Infof("Number of unavailable DaemonSet pods: %d, is equal to or exceeds allowed maximum: %d", numUnavailable, maxUnavailable) break } klog.V(4).Infof("Marking pod %s/%s for deletion", ds.Name, pod.Name) oldPodsToDelete = append(oldPodsToDelete, pod.Name) numUnavailable++ } return dsc.syncNodes(ds, oldPodsToDelete, []string{}, hash) }
2.3 dsc.updateDaemonSetStatus
dsc.updateDaemonSetStatus方法负责根据现存daemonset pod的部署情况以及pod的状态、node是否满足pod运行条件等信息,来更新daemonset的status状态值,这里不对代码展开分析,只分析一下daemonset的status中各个字段的意思。
(1)currentNumberScheduled: 已经调度了daemonset pod的节点数量;
(2)desiredNumberScheduled: 期望调度daemonset pod的节点数量;
(3)numberMisscheduled:不需要调度daemonset pod但已经调度完成了的节点数量;
(4)numberAvailable: pod状态达到Available的数量(pod达到Ready状态MinReadySeconds时间后,就认为达到了Available状态);
(5)numberReady: pod状态达到Ready的数量;
(6)numberUnavailable: desiredNumberScheduled - numberAvailable;
(7)updatedNumberScheduled: 已经调度了最新版本daemonset pod的节点数量。
总结
daemonset controller创建 pod 的流程与 replicaset controller 创建 pod 的流程是相似的,都使用了 expectations 机制并且限制了在一次调谐过程中最多创建或删除的 pod 数量。daemonset的更新方式与 statefulset 一样包含 OnDelete 和 RollingUpdate(滚动更新) 两种,OnDelete 方式需要手动删除对应的 pod,然后daemonset controller才会创建出新的pod,而 RollingUpdate 方式与 statefulset 和 deployment 有所区别, RollingUpdate方式更新时是按照先删除pod再创建pod的顺序进行,不像deployment那样可以先创建出新的pod再删除旧的pod。
daemonset controller架构
daemonset controller的大致组成和处理流程如下图,daemonset controller对daemonset、pod、node、ControllerRevision对象注册了event handler,当有事件时,会watch到然后将对应的daemonset对象放入到queue中,然后syncDaemonset
方法为daemonset controller调谐daemonset对象的核心处理逻辑所在,从queue中取出daemonset对象,做调谐处理。
daemonset controller核心处理逻辑
daemonset controller的核心处理逻辑是调谐daomonset对象,使得daemonset在合适node上完成pod的创建、在不合适node上完成pod的删除,触发滚动更新时按照配置的滚动更新策略配置来删除旧的pod、创建新的pod,并根据历史版本限制配置清理daemonset的历史版本,最后更新daemonset对象的status状态。
daemonset controller创建pod算法
daemonset controller创建pod的算法与replicaset controller创建pod的算法几乎相同,按1、2、4、8...的递增趋势分多批次进行(每次调谐中创建pod的数量上限为250个,超过上限的会在下次调谐中再创建),若某批次创建pod有失败的(如apiserver限流,丢弃请求等,注意:超时除外,因为initialization处理有可能超时),则后续批次的pod创建不再进行,需等待该daemonset对象下次调谐时再触发该pod创建算法,进行pod的创建,直至所有满足条件的node上都有该daemonset的pod。
daemonset controller删除pod算法
daemonset controller删除pod的算法是,拉起与要删除的pod数量相同的goroutine来删除pod(每次调谐中删除pod的数量上限为250),并等待所有goroutine执行完成。删除pod有失败的(如apiserver限流,丢弃请求)或超过250上限的部分,需等待该daemonset对象下次调谐时再触发该pod删除算法,进行pod的删除,直至所有期望被删除的pod都被删除。
这篇关于k8s daemonset controller源码分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15在Kubernetes (k8s) 中搭建三台 Nginx 服务器怎么实现?-icode9专业技术文章分享
- 2024-11-05基于Kubernetes的自定义AWS云平台搭建指南
- 2024-11-05基于Kubernetes Gateway API的现代流量管理方案
- 2024-11-05在Kubernetes上部署你的第一个应用:Nginx服务器
- 2024-11-05利用拓扑感知路由控制Kubernetes中的流量
- 2024-11-05Kubernetes中的层次命名空间:更灵活的资源管理方案
- 2024-11-055分钟上手 Kubernetes:精简实用的 Kubectl 命令速查宝典!
- 2024-10-30K8s 容器的定向调度与亲和性
- 2024-10-28云原生周刊:K8s未来三大发展方向 丨2024.10.28
- 2024-10-25亚马逊弹性Kubernetes服务(EKS)实战:轻松搭建Kubernetes平台