HyperLPR车牌识别库代码分析总结(14)
2021/12/25 17:09:08
本文主要是介绍HyperLPR车牌识别库代码分析总结(14),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
2021SC@SDUSC
源代码下载地址:https://gitee.com/zeusees/HyperLPR
源码配置的详情见第一篇分析
本篇内容将总结之前所分析的三个函数:
一、SimpleRecognizePlateByE2E(self,image)函数
def SimpleRecognizePlateByE2E(self,image): images = self.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) res_set = [] for j,plate in enumerate(images): plate, rect =plate image_rgb,rect_refine = self.finemappingVertical(plate,rect) res,confidence = self.recognizeOne(image_rgb) res_set.append([res,confidence,rect_refine]) return res_set
对导入的车牌文件(也就是图片)进行车牌粗定位,目的是找出图中所有的车牌,这部分是通过delectPlateRough函数实现的。找出所有车牌后,对图中所有车牌进行精定位,也就是沿着这些车牌的轮廓,将车牌裁剪下来,方便接下来对车牌内容进行识别,这项功能是通过finemappingVertical函数实现的。最后要对车牌进行文字识别,通过recognizeOne函数实现。
二、SimpleRecognizePlateByE2E(image)函数
def SimpleRecognizePlateByE2E(image): t0 = time.time() images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) res_set = [] for j,plate in enumerate(images): plate, rect, origin_plate =plate plate =cv2.resize(plate,(136,36*2)) res,confidence = e2e.recognizeOne(origin_plate) print "res",res t1 = time.time() ptype = td.SimplePredict(plate) if ptype>0 and ptype<5: plate = cv2.bitwise_not(plate) image_rgb = fm.findContoursAndDrawBoundingBox(plate) image_rgb = fv.finemappingVertical(image_rgb) image_rgb = fv.finemappingVertical(image_rgb) cache.verticalMappingToFolder(image_rgb) res,confidence = e2e.recognizeOne(image_rgb) print res,confidence res_set.append([[],res,confidence]) if confidence>0.7: image = drawRectBox(image, rect, res+" "+str(round(confidence,3))) return image,res_set
该函数主要作用是先用detectPlateRough进行车牌粗定位,识别车牌,获取车牌图片。后对这组图片用resize裁剪,再使用recognizeOne进行初步文字识别,再通过bitwise_not将其图片各像素取“非”。通过findContoursAndDrawBoundingBox函数,在车牌字符没有出现完全的粘连的情况下,进行精定位-确定上下边界,寻找图片的上下界,并将图片转正,剔除噪点。然后再用两次的finemappingVertical识别出文字,剔除没有文字的背景,并返回置信度。先使用verticalMappingToFolder生成图片标签,最后再对该图片用recognizeOne识别文字一次,判断置信度,完成识别操作。
该函数与第一个函数的区别在于先对图片进行recognizeOne识别,再在finemappingVertical之前使用了findContoursAndDrawBoundingBox(plate)对图片进行寻找上下界和剔除噪点的工作。并在此之后用verticalMappingToFolder生成图片文件,再进行recognizeOne识别字符操作,最后完成识别操作。
三、SimpleRecognizePlate(image)函数
def SimpleRecognizePlate(image): t0 = time.time() images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) res_set = [] for j,plate in enumerate(images): plate, rect, origin_plate =plate # plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) plate =cv2.resize(plate,(136,36*2)) t1 = time.time() ptype = td.SimplePredict(plate) if ptype>0 and ptype<5: plate = cv2.bitwise_not(plate) image_rgb = fm.findContoursAndDrawBoundingBox(plate) image_rgb = fv.finemappingVertical(image_rgb) cache.verticalMappingToFolder(image_rgb) print("e2e:", e2e.recognizeOne(image_rgb)) image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY) cv2.imshow("image_gray",image_gray) cv2.imwrite("./"+str(j)+".jpg",image_gray) print("校正",time.time() - t1,"s") t2 = time.time() val = segmentation.slidingWindowsEval(image_gray) print("分割和识别",time.time() - t2,"s") if len(val)==3: blocks, res, confidence = val if confidence/7>0.7: image = drawRectBox(image,rect,res) res_set.append(res) for i,block in enumerate(blocks): block_ = cv2.resize(block,(25,25)) block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR) image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_ if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape: pass if confidence>0: print("车牌:",res,"置信度:",confidence/7) else: pass # print "不确定的车牌:", res, "置信度:", confidence print(time.time() - t0,"s") return image,res_set
该函数是主要的运行函数,其分析如下:
该函数主要作用是先用detectPlateRough进行车牌粗定位,识别车牌,获取车牌图片。后对这组图片用cvtColor将图片变成只有灰色和白色的图片,后用resize裁剪,通过bitwise_not将其图片各像素取“非”。通过findContoursAndDrawBoundingBox函数,在车牌字符没有出现完全的粘连的情况下,进行精定位-确定上下边界,寻找图片的上下界,并将图片转正,剔除噪点。然后再用一次的finemappingVertical识别出文字,剔除没有文字的背景,并返回置信度。先使用verticalMappingToFolder生成图片标签并输出,再对该图片用recognizeOne识别文字一次,得出置信度。之后对处理后的文件再进行校准,使用基于滑动窗口的字符分割与识别的slidingWindowsEval函数,与recognizeOne方法功能类似,但识别出置信度不同。置信度大于0.7时,再用drawRectBox函数打上boundingbox和标签,将对一开始输入进行识别的图片中,框出识别出的车牌显示车牌号码。最后把图片保存为jpg的格式并保存至当前文件夹下。
这篇关于HyperLPR车牌识别库代码分析总结(14)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-28一步到位:购买适合 SEO 的域名全攻略
- 2024-12-27OpenFeign服务间调用学习入门
- 2024-12-27OpenFeign服务间调用学习入门
- 2024-12-27OpenFeign学习入门:轻松掌握微服务通信
- 2024-12-27OpenFeign学习入门:轻松掌握微服务间的HTTP请求
- 2024-12-27JDK17新特性学习入门:简洁教程带你轻松上手
- 2024-12-27JMeter传递token学习入门教程
- 2024-12-27JMeter压测学习入门指南
- 2024-12-27JWT单点登录学习入门指南
- 2024-12-27JWT单点登录原理学习入门