mysql优化

2022/1/3 19:13:03

本文主要是介绍mysql优化,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

 

  • 作者:编码砖家

  • https://www.cnblogs.com/xiaoyangjia/p/11267191.html


文章目录:

  • MySQL 性能

    • 最大数据量

    • 最大并发数

    • 查询耗时 0.5 秒

    • 实施原则

  • 数据表设计

    • 数据类型

    • 避免空值

    • text 类型

  • 索引优化

    • 索引分类

    • 优化原则

  • SQL 优化

    • 分批处理

    • 不做列运算

    • 避免 Select *

    • 操作符 <> 优化

    • OR 优化

    • IN 优化

    • LIKE 优化

    • JOIN 优化

    • LIMIT 优化

  • 其他数据库


博主负责的项目主要采用阿里云数据库 MySQL,最近频繁出现慢 SQL 告警,执行时间最长的竟然高达 5 分钟。导出日志后分析,主要原因竟然是没有命中索引和没有分页处理。其实这是非常低级的错误,我不禁后背一凉,团队成员的技术水平亟待提高啊。改造这些 SQL 的过程中,总结了一些经验分享给大家,如果有错误欢迎批评指正。

MySQL 性能

最大数据量

抛开数据量和并发数,谈性能都是耍流氓。MySQL 没有限制单表最大记录数,它取决于操作系统对文件大小的限制。

文件系统单文件大小限制
FAT32 最大 4G
NTFS 最大 64GB
NTFS5.0 最大 2TB
EXT2 块大小为 1024 字节,文件最大容量 16GB;块大小为 4096 字节,文件最大容量 2TB
EXT3 块大小为 4KB,文件最大容量为 4TB
EXT4 理论可以大于 16TB

《阿里巴巴 Java 开发手册》提出单表行数超过 500 万行或者单表容量超过 2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL 配置、数据表设计、索引优化。500 万这个值仅供参考,并非铁律。博主曾经操作过超过 4 亿行数据的单表,分页查询最新的 20 条记录耗时 0.6 秒,SQL 语句大致是select field_1,field_2 from table where id < #{prePageMinId} order by id desc limit 20,prePageMinId 是上一页数据记录的最小 ID。虽然当时查询速度还凑合,随着数据不断增长,有朝一日必定不堪重负。分库分表是个周期长而风险高的大活儿,应该尽可能在当前结构上优化,比如升级硬件、迁移历史数据等等,实在没辙了再分。对分库分表感兴趣的同学可以阅读分库分表的基本思想。

最大并发数

并发数是指同一时刻数据库能处理多少个请求,由 max_connections 和 max_user_connections 决定。max_connections 是指 MySQL 实例的最大连接数,上限值是 16384,max_user_connections 是指每个数据库用户的最大连接数。MySQL 会为每个连接提供缓冲区,意味着消耗更多的内存。如果连接数设置太高硬件吃不消,太低又不能充分利用硬件。一般要求两者比值超过 10%,计算方法如下:

max_used_connections / max_connections * 100% = 3/100 *100% ≈ 3%

查看最大连接数与响应最大连接数:

show variables like '%max_connections%';
show variables like '%max_user_connections%';

在配置文件 my.cnf 中修改最大连接数

[mysqld]
max_connections = 100
max_used_connections = 20

查询耗时 0.5 秒

建议将单次查询耗时控制在 0.5 秒以内,0.5 秒是个经验值,源于用户体验的 3 秒原则。如果用户的操作 3 秒内没有响应,将会厌烦甚至退出。响应时间 = 客户端 UI 渲染耗时 + 网络请求耗时 + 应用程序处理耗时 + 查询数据库耗时,0.5 秒就是留给数据库 1/6 的处理时间。

实施原则

相比 NoSQL 数据库,MySQL 是个娇气脆弱的家伙。它就像体育课上的女同学,一点纠纷就和同学闹别扭 (扩容难),跑两步就气喘吁吁 (容量小并发低),常常身体不适要请假 (SQL 约束太多)。如今大家都会搞点分布式,应用程序扩容比数据库要容易得多,所以实施原则是数据库少干活,应用程序多干活

  • 充分利用但不滥用索引,须知索引也消耗磁盘和 CPU。

  • 不推荐使用数据库函数格式化数据,交给应用程序处理。

  • 不推荐使用外键约束,用应用程序保证数据准确性。

  • 写多读少的场景,不推荐使用唯一索引,用应用程序保证唯一性。

  • 适当冗余字段,尝试创建中间表,用应用程序计算中间结果,用空间换时间。

  • 不允许执行极度耗时的事务,配合应用程序拆分成更小的事务。

  • 预估重要数据表(比如订单表)的负载和数据增长态势,提前优化。

数据表设计

数据类型

数据类型的选择原则:更简单或者占用空间更小。

  • 如果长度能够满足,整型尽量使用 tinyint、smallint、medium_int 而非 int。

  • 如果字符串长度确定,采用 char 类型。

  • 如果 varchar 能够满足,不采用 text 类型。

  • 精度要求较高的使用 decimal 类型,也可以使用 BIGINT,比如精确两位小数就乘以 100 后保存。

  • 尽量采用 timestamp 而非 datetime。

类型占据字节描述
datetime 8 字节 '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999
timestamp 4 字节 '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'

相比 datetime,timestamp 占用更少的空间,以 UTC 的格式储存自动转换时区。

避免空值

MySQL 中字段为 NULL 时依然占用空间,会使索引、索引统计更加复杂。从 NULL 值更新到非 NULL 无法做到原地更新,容易发生索引分裂影响性能。尽可能将 NULL 值用有意义的值代替,也能避免 SQL 语句里面包含is not null的判断。

text 类型优化

由于 text 字段储存大量数据,表容量会很早涨上去,影响其他字段的查询性能。建议抽取出来放在子表里,用业务主键关联。

索引优化

索引分类

  1. 普通索引:最基本的索引。

  2. 组合索引:多个字段上建立的索引,能够加速复合查询条件的检索。

  3. 唯一索引:与普通索引类似,但索引列的值必须唯一,允许有空值。

  4. 组合唯一索引:列值的组合必须唯一。

  5. 主键索引:特殊的唯一索引,用于唯一标识数据表中的某一条记录,不允许有空值,一般用 primary key 约束。

  6. 全文索引:用于海量文本的查询,MySQL5.6 之后的 InnoDB 和 MyISAM 均支持全文索引。由于查询精度以及扩展性不佳,更多的企业选择 Elasticsearch。

索引优化

  1. 分页查询很重要,如果查询数据量超过 30%,MYSQL 不会使用索引。

  2. 单表索引数不超过 5 个、单个索引字段数不超过 5 个。

  3. 字符串可使用前缀索引,前缀长度控制在 5-8 个字符。

  4. 字段唯一性太低,增加索引没有意义,如:是否删除、性别。

  5. 合理使用覆盖索引,如下所示:

select login_name, nick_name from member where login_name = ?

login_name, nick_name 两个字段建立组合索引,比 login_name 简单索引要更快

SQL 优化

分批处理

博主小时候看到鱼塘挖开小口子放水,水面有各种漂浮物。浮萍和树叶总能顺利通过出水口,而树枝会挡住其他物体通过,有时还会卡住,需要人工清理。MySQL 就是鱼塘,最大并发数和网络带宽就是出水口,用户 SQL 就是漂浮物。不带分页参数的查询或者影响大量数据的 update 和 delete 操作,都是树枝,我们要把它打散分批处理,举例说明:
业务描述:更新用户所有已过期的优惠券为不可用状态。
SQL 语句:update status=0 FROM `coupon` WHERE expire_date <= #{currentDate} and status=1;
如果大量优惠券需要更新为不可用状态,执行这条 SQL 可能会堵死其他 SQL,分批处理伪代码如下:

int pageNo = 1;
int PAGE_SIZE = 100;
while(true) {
    List<Integer> batchIdList = queryList('select id FROM `coupon` WHERE expire_date <= #{currentDate} and status = 1 limit #{(pageNo-1) * PAGE_SIZE},#{PAGE_SIZE}');
    if (CollectionUtils.isEmpty(batchIdList)) {
        return;
    }
    update('update status = 0 FROM `coupon` where status = 1 and id in #{batchIdList}')
    pageNo ++;
}

操作符 <> 优化

通常 <> 操作符无法使用索引,举例如下,查询金额不为 100 元的订单:

select id from orders where amount  != 100;

如果金额为 100 的订单极少,这种数据分布严重不均的情况下,有可能使用索引。鉴于这种不确定性,采用 union 聚合搜索结果,改写方法如下:

(select id from orders where amount > 100)
 union all
(select id from orders where amount < 100 and amount > 0)

OR 优化

在 Innodb 引擎下 or 无法使用组合索引,比如:

select id,product_name from orders where mobile_no = '13421800407' or user_id = 100;

 

OR 无法命中 mobile_no + user_id 的组合索引,可采用 union,如下所示:

(select id,product_name from orders where mobile_no = '13421800407')
 union
(select id,product_name from orders where user_id = 100);

此时 id 和 product_name 字段都有索引,查询才最高效。

IN 优化

  1. IN 适合主表大子表小,EXIST 适合主表小子表大。由于查询优化器的不断升级,很多场景这两者性能差不多一样了。

  2. 尝试改为 join 查询,举例如下:

select id from orders where user_id in (select id from user where level = 'VIP');

采用 JOIN 如下所示:

select o.id from orders o left join user u on o.user_id = u.id where u.level = 'VIP';

不做列运算

通常在查询条件列运算会导致索引失效,如下所示:
查询当日订单

select id from order where date_format(create_time,'%Y-%m-%d') = '2019-07-01';

date_format 函数会导致这个查询无法使用索引,改写后:

select id from order where create_time between '2019-07-01 00:00:00' and '2019-07-01 23:59:59';

避免 Select all

如果不查询表中所有的列,避免使用SELECT *,它会进行全表扫描,不能有效利用索引。

Like 优化

like 用于模糊查询,举个例子(field 已建立索引):

SELECT column FROM table WHERE field like '%keyword%';

这个查询未命中索引,换成下面的写法:

SELECT column FROM table WHERE field like 'keyword%';

去除了前面的 % 查询将会命中索引,但是产品经理一定要前后模糊匹配呢?全文索引 fulltext 可以尝试一下,但 Elasticsearch 才是终极武器。

Join 优化

join 的实现是采用 Nested Loop Join 算法,就是通过驱动表的结果集作为基础数据,通过该结数据作为过滤条件到下一个表中循环查询数据,然后合并结果。如果有多个 join,则将前面的结果集作为循环数据,再次到后一个表中查询数据。

  1. 驱动表和被驱动表尽可能增加查询条件,满足 ON 的条件而少用 Where,用小结果集驱动大结果集。

  2. 被驱动表的 join 字段上加上索引,无法建立索引的时候,设置足够的 Join Buffer Size。

  3. 禁止 join 连接三个以上的表,尝试增加冗余字段。

Limit 优化

limit 用于分页查询时越往后翻性能越差,解决的原则:缩小扫描范围,如下所示:

select * from orders order by id desc limit 100000,10 
耗时0.4秒
select * from orders order by id desc limit 1000000,10
耗时5.2秒

先筛选出 ID 缩小查询范围,写法如下:

select * from orders where id > (select id from orders order by id desc  limit 1000000, 1) order by id desc limit 0,10
耗时0.5秒

如果查询条件仅有主键 ID,写法如下:

select id from orders where id between 1000000 and 1000010 order by id desc
耗时0.3秒

如果以上方案依然很慢呢?只好用游标了,感兴趣的朋友阅读 JDBC 使用游标实现分页查询的方法

其他数据库

作为一名后端开发人员,务必精通作为存储核心的 MySQL 或 SQL Server,也要积极关注 NoSQL 数据库,他们已经足够成熟并被广泛采用,能解决特定场景下的性能瓶颈。

分类数据库特性
键值型 Memcache 用于内容缓存,大量数据的高访问负载
键值型 Redis 用于内容缓存,比 Memcache 支持更多的数据类型,并能持久化数据
列式存储 HBase Hadoop 体系的核心数据库,海量结构化数据存储,大数据必备。
文档型 MongoDb 知名文档型数据库,也可以用于缓存
文档型 CouchDB Apache 的开源项目,专注于易用性,支持 REST API
文档型 SequoiaDB 国内知名文档型数据库
图形 Neo4J 用于社交网络构建关系图谱,推荐系统等

参考 (部分摘抄的文字版权属于原作者):

https://www.jianshu.com/p/6864abb4d885

来源:https://mp.weixin.qq.com/s/nvSD4e_m-W2D9vQBxVkvBg

 



这篇关于mysql优化的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程