【Matlab交通标志识别】矩匹配算法路标识别【含GUI源码 1175期】
2022/1/6 22:04:36
本文主要是介绍【Matlab交通标志识别】矩匹配算法路标识别【含GUI源码 1175期】,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、矩匹配算法简介
图像的矩是归一化的灰度级图像的二维随机变量的概率密度,是一个统计学特征。OpenCV中实现了这个矩的算子是Moments();其中分为零阶矩M00、一阶矩M10和M01、二阶矩M20,M02和M11;其中当图像为二值图时,M00是图像面积(白色区域)的总和,或者说连通域的面积;而这时M10和M01是图像白色区域上x和y坐标值的累计,所以图像的的重心(Xc,Yc)可以由:
Xc=M10/M00;
Yc=M01/M00;
图像的二阶矩一般用来求图像的方向,方法是:
二、部分源代码
function varargout = FeatureExtraction_New(varargin) % FEATUREEXTRACTION_NEW M-file for FeatureExtraction_New.fig % FEATUREEXTRACTION_NEW, by itself, creates a new FEATUREEXTRACTION_NEW or raises the existing % singleton*. % % H = FEATUREEXTRACTION_NEW returns the handle to a new FEATUREEXTRACTION_NEW or the handle to % the existing singleton*. % % FEATUREEXTRACTION_NEW('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in FEATUREEXTRACTION_NEW.M with the given input arguments. % % FEATUREEXTRACTION_NEW('Property','Value',...) creates a new FEATUREEXTRACTION_NEW or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before FeatureExtraction_New_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to FeatureExtraction_New_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help FeatureExtraction_New % Last Modified by GUIDE v2.5 20-Jul-2010 09:42:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @FeatureExtraction_New_OpeningFcn, ... 'gui_OutputFcn', @FeatureExtraction_New_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before FeatureExtraction_New is made visible. function FeatureExtraction_New_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to FeatureExtraction_New (see VARARGIN) global Pic_num; Pic_num=0; % Choose default command line output for FeatureExtraction_New handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes FeatureExtraction_New wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = FeatureExtraction_New_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global Pic; global Pic_gray; global fname; global Pic_num; [fname, pname, index] = uigetfile({'*bmp;*.jpg';'*.gif'},'读取图片'); if index==1 Pic_num=Pic_num+1; str = [pname fname]; Pic=imread(str); set(handles.text1,'string',fname); axes(handles.axes1); imshow(Pic); end axes(handles.axes2); Pic_gray=rgb2gray(Pic); imshow(Pic_gray); [u,n2,e,K,energy,ENTROPY]=Pic_gray_count(Pic_gray); % 计算灰度图像的种种特征并显示 set(handles.u,'string',num2str(u)); %均值 set(handles.n2,'string',num2str(n2)); %方差 set(handles.e,'string',num2str(e)); %偏度 set(handles.K,'string',num2str(K)); %峰度 set(handles.energy,'string',num2str(energy));%能量 set(handles.ENTROPY,'string',num2str(ENTROPY));%熵 score=25.0*ENTROPY/20+25.0*1000/n2+25.0*4/K+25.0*8/abs(u-128); % 计算评分值,给出结果 score_result='优'; if score<60 score_result='差'; elseif score<70 score_result='中'; elseif score<80 score_result='良'; else score_result='优'; end set(handles.good_or_bad,'string',score_result); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,average]=Pic_Red_Outstand(Pic,sliderValue,Pic_R_rate) % % 将图片 Pic 中的红色分量突出来,适用于对小的,完整的,占据整个图片的路标的处理,对大图片中的小路标的处理效果不好 % 如果阈值 sliderValue 为负数,则为利用计算出的默认average 作为阈值,调整突出的红色部分的多少 % 如果阈值 sliderValue 非负数,则根据 sliderValue 作为阈值,调整突出的红色部分的多少 % R_G 为 R_G=0.5*(2*Pic_double(:,:,1)-Pic_double(:,:,2)-Pic_double(:,:,3)); % R_G_gray 为 R_G 所构成的灰度图像 % R_G_binary 是与阈值 average 或 sliderValue 相关的R_G_gray 的二值化图像, % 当红色分量太大,R_G_binary 比 R_G_binary_real 效果更好 % R_G_binary_real 是 R_G_binary 经过修正的 R_G_gray 的二值化图像 % average 为计算出的阈值 % Pic_pattern 描述图片 Pic 的分类情况 % Pic_R_rate 至关重要的变量! % 当对小图片(路标的四周靠近图片的四周)处理时,路标(红色)的比例为0.37较好,默认为 0.4 % 当对大图片(路标在图片中只占一个较小的区域)时,路标的比例很小,默认为 0(即启用修正) % 当 R_hao>Pic_R_rate 时,启用修正,否则不启用修正 global Pic; global Pic_pattern_new; [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,-1,0.4); % 0.4 突出红色分量 set(handles.text5,'string',num2str(average)); axes(handles.axes3); imshow(R_G_gray); axes(handles.axes4); imshow(R_G_binary); axes(handles.axes5); imshow(R_G_binary_real); % figure; % surf(Pic_pattern_new); Pic_pattern_temp=0; [a,b]=size(Pic_pattern_new); for i=1:a % 将分类转变为彩色图片显示出来 for j=1:b if Pic_pattern_new(i,j)==-1 Pic_pattern_temp(i,j,1:3)=[0,0,0]; end if Pic_pattern_new(i,j)==1 Pic_pattern_temp(i,j,1:3)=[255,0,0]; end if Pic_pattern_new(i,j)==2 % 第二类(大于平均阈值的一类)标为绿色 Pic_pattern_temp(i,j,1:3)=[0,255,0]; end if Pic_pattern_new(i,j)==3 % 第三类(小于平均阈值的一类)标为蓝色 Pic_pattern_temp(i,j,1:3)=[0,0,255]; end end end axes(handles.axes6); imshow(Pic_pattern_temp); % --- Executes on slider movement. function slider1_Callback(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global Pic; global Pic_pattern_new; sliderValue = get(handles.slider1,'Value'); sliderValue =round(sliderValue); set(handles.text3,'String', num2str(sliderValue)); num2str(sliderValue) [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,sliderValue,0.4); % 突出红色分量 set(handles.text5,'string',num2str(average)); axes(handles.axes3); imshow(R_G_gray); axes(handles.axes4); imshow(R_G_binary); axes(handles.axes5); imshow(R_G_binary_real); Pic_pattern_temp=0; [a,b]=size(Pic_pattern_new); for i=1:a % 将分类转变为彩色图片显示出来 for j=1:b if Pic_pattern_new(i,j)==-1 Pic_pattern_temp(i,j,1:3)=[0,0,0]; end if Pic_pattern_new(i,j)==1 Pic_pattern_temp(i,j,1:3)=[255,0,0]; end if Pic_pattern_new(i,j)==2 Pic_pattern_temp(i,j,1:3)=[0,255,0]; end if Pic_pattern_new(i,j)==3 Pic_pattern_temp(i,j,1:3)=[0,0,255]; end end end axes(handles.axes6); imshow(Pic_pattern_temp); % --- Executes during object creation, after setting all properties. function slider1_CreateFcn(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global Pic; global Pic_pattern_new; slider_value=str2num(get(handles.text3,'string')); average=str2num(get(handles.text5,'string')); if slider_value>0 [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,slider_value,1); else [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,average,1); end figure; surf(Pic_pattern_new); % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global Pic_pattern_new; global fname; global Pic_num; [fname_a,fname_b]=size(fname); fname_new=fname(1,1:fname_b-4); load('fname_array.mat'); % 生成并保存图像名称构成的数组 if Pic_num==1 %清空数据库中的数据 fname_array=' '; end fname_array(Pic_num,1:fname_b-4)=fname_new; save 'fname_array.mat' fname_array; load('signpost_data.mat'); % 生成并保存矩的相关结果构成的数组 if Pic_num==1 %清空数据库中的数据 signpost_data=0; end Pic_binary_1=0; % 由 Pic_pattern_new 生成不同三类的二值化图像,以便计算矩 Pic_binary_2=0; Pic_binary_3=0; [a,b]=size(Pic_pattern_new); for i=1:a for j=1:b if Pic_pattern_new(i,j)==1 Pic_binary_1(i,j)=0; else Pic_binary_1(i,j)=1; end if Pic_pattern_new(i,j)==2 Pic_binary_2(i,j)=0; else Pic_binary_2(i,j)=1; end if Pic_pattern_new(i,j)==3 Pic_binary_3(i,j)=0; else Pic_binary_3(i,j)=1; end end
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]陈浩,方勇,朱大洲,王成,陈子龙.基于蚁群算法的玉米植株热红外图像边缘检测[J].农机化研究. 2015,37(06)
五、获取代码方式
Matlab王者助手CSDN名片
这篇关于【Matlab交通标志识别】矩匹配算法路标识别【含GUI源码 1175期】的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-26Java语音识别项目资料:新手入门教程
- 2024-11-26JAVA语音识别项目资料:新手入门教程
- 2024-11-26Java语音识别项目资料:入门与实践指南
- 2024-11-26Java云原生资料入门教程
- 2024-11-26Java云原生资料入门教程
- 2024-11-26Java云原生资料:新手入门教程
- 2024-11-25Java创意资料:新手入门的创意学习指南
- 2024-11-25JAVA对接阿里云智能语音服务资料详解:新手入门指南
- 2024-11-25Java对接阿里云智能语音服务资料详解
- 2024-11-25Java对接阿里云智能语音服务资料详解