二叉树遍历算法的应用
2022/1/11 1:33:34
本文主要是介绍二叉树遍历算法的应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
二叉树的抽象数据结构
1 typedef struct Node 2 { 3 char data; 4 struct Node* Lchild; 5 struct Node* Rchild; 6 }BTNode;//Binary Tree Node
打印二叉树的叶子结点
1 void PrintLeafNode(BTNode* A) 2 {/*打印二叉树的叶子结点*/ 3 if (A == NULL) 4 { 5 return; 6 } 7 else if ((!A->Lchild) && (!A->Rchild)) 8 { 9 printf("%c", A->data); 10 return; 11 } 12 else 13 { 14 PrintLeafNode(A->Lchild); 15 PrintLeafNode(A->Rchild); 16 } 17 }View Code
二叉树相似性判定(所谓二叉树 A 和 B 相似,是指 A 和 B 要么均为空二叉树、要么 A 的左子树与 B 的左子树相似,且 A 的右子树与 B 的右子树相似)
1 int Like(BTNode* A, BTNode* B) 2 {/*二叉树相似性判定*/ 3 int Like1 = 0; 4 int Like2 = 0; 5 if (A == NULL && B == NULL) 6 { 7 return 1; 8 } 9 else if (A == NULL || B == NULL) 10 { 11 return 0; 12 } 13 else 14 { 15 Like1 = Like(A->Lchild, B->Lchild); 16 Like2 = Like(A->Rchild, B->Rchild); 17 return Like1 && Like2; 18 } 19 }View Code
求二叉树高度
1 int DepthTree(BTNode* A) 2 {/*求二叉树高度*/ 3 int Depth = 0; 4 int DepthLeft = 0; 5 int DepthRight = 0; 6 if (A) 7 { 8 DepthLeft = DepthTree(A->Lchild); 9 DepthRight = DepthTree(A->Rchild); 10 Depth = 1 + (DepthLeft > DepthRight ? DepthLeft : DepthRight); 11 } 12 return Depth; 13 }View Code
统计二叉树的结点数
1 int CountNode(BTNode* A) 2 {/*统计二叉树的结点数*/ 3 int sum = 0; 4 if (A) 5 { 6 sum++; 7 sum += CountNode(A->Lchild); 8 sum += CountNode(A->Rchild); 9 } 10 return sum; 11 }View Code
统计叶子结点数目
1 int CountLeafNode(BTNode* A) 2 {/*统计叶子结点数目*/ 3 int sum = 0; 4 if (A) 5 { 6 if (!A->Lchild && !A->Rchild) 7 { 8 sum++; 9 } 10 sum += CountLeafNode(A->Lchild); 11 sum += CountLeafNode(A->Rchild); 12 } 13 return sum; 14 }View Code
求结点的双亲
1 char Parent(BTNode* A, char ChildNode) 2 {/*求结点的双亲*/ 3 char ParentNode = '\0'; 4 if (A == NULL) 5 { 6 return '\0'; 7 } 8 else if (A->Lchild && A->Lchild->data == ChildNode) 9 { 10 return A->data; 11 } 12 else if (A->Rchild && A->Rchild->data == ChildNode) 13 { 14 return A->data; 15 } 16 else 17 { 18 ParentNode = Parent(A->Lchild, ChildNode); 19 if (ParentNode != '\0') 20 { 21 return ParentNode; 22 } 23 else 24 {/*递归在右子树中找*/ 25 return Parent(A->Rchild, ChildNode); 26 } 27 } 28 }View Code
源代码
1 #define _CRT_SECURE_NO_WARNINGS 2 #include <stdio.h> 3 #include <stdlib.h> 4 5 typedef struct Node 6 { 7 char data; 8 struct Node* Lchild; 9 struct Node* Rchild; 10 }BTNode;//Binary Tree Node 11 12 BTNode* CreateBinaryTree(); 13 void PrintLeafNode(BTNode* A); 14 int Like(BTNode* A, BTNode* B); 15 int DepthTree(BTNode* A); 16 int CountNode(BTNode* A); 17 int CountLeafNode(BTNode* A); 18 char Parent(BTNode* A, char ChildNode); 19 20 21 int main(void) 22 { 23 char ChildNode = '\0'; 24 char ParentNode = '\0'; 25 BTNode* A = NULL; 26 BTNode* B = NULL; 27 28 printf("请输入该二叉树先序遍历序列(用^表示空子树,叶子结点要跟两个^):\n"); 29 A = CreateBinaryTree(); 30 31 printf("树的高度:%d\n", DepthTree(A)); 32 printf("树总结点数:%d\n", CountNode(A)); 33 printf("叶子结点数:%d\n", CountLeafNode(A)); 34 35 printf("叶子结点为:"); 36 PrintLeafNode(A); 37 38 printf("\n请输入要查询双亲的结点:"); 39 scanf(" %c", &ChildNode);/* %c前有一个空格用于吸收空白字符 */ 40 ParentNode = Parent(A, ChildNode); 41 if (ParentNode == '\0') 42 { 43 printf("查询失败\n"); 44 } 45 else 46 { 47 printf("%c的双亲结点是%c", ChildNode, ParentNode); 48 } 49 50 printf("\n请输入另一个二叉树先序遍历序列(用^表示空子树,叶子结点要跟两个^):\n"); 51 B = CreateBinaryTree(); 52 if (Like(A, B)) 53 { 54 printf("二叉树A和B相似\n"); 55 } 56 else 57 { 58 printf("二叉树A和B不相似\n"); 59 } 60 61 system("pause"); 62 return 0; 63 } 64 65 BTNode* CreateBinaryTree() 66 { 67 BTNode* A = NULL; 68 char ch = '\0'; 69 scanf(" %c", &ch); 70 if (ch == '^') 71 { 72 return NULL; 73 } 74 else 75 { 76 A = (BTNode*)calloc(1, sizeof(BTNode)); 77 A->data = ch; 78 A->Lchild = CreateBinaryTree(); 79 A->Rchild = CreateBinaryTree(); 80 return A; 81 } 82 } 83 84 void PrintLeafNode(BTNode* A) 85 {/*打印二叉树的叶子结点*/ 86 if (A == NULL) 87 { 88 return; 89 } 90 else if ((!A->Lchild) && (!A->Rchild)) 91 { 92 printf("%c", A->data); 93 return; 94 } 95 else 96 { 97 PrintLeafNode(A->Lchild); 98 PrintLeafNode(A->Rchild); 99 } 100 } 101 102 int Like(BTNode* A, BTNode* B) 103 {/*二叉树相似性判定*/ 104 int Like1 = 0; 105 int Like2 = 0; 106 if (A == NULL && B == NULL) 107 { 108 return 1; 109 } 110 else if (A == NULL || B == NULL) 111 { 112 return 0; 113 } 114 else 115 { 116 Like1 = Like(A->Lchild, B->Lchild); 117 Like2 = Like(A->Rchild, B->Rchild); 118 return Like1 && Like2; 119 } 120 } 121 122 int DepthTree(BTNode* A) 123 {/*求二叉树高度*/ 124 int Depth = 0; 125 int DepthLeft = 0; 126 int DepthRight = 0; 127 if (A) 128 { 129 DepthLeft = DepthTree(A->Lchild); 130 DepthRight = DepthTree(A->Rchild); 131 Depth = 1 + (DepthLeft > DepthRight ? DepthLeft : DepthRight); 132 } 133 return Depth; 134 } 135 136 int CountNode(BTNode* A) 137 {/*统计二叉树的结点数*/ 138 int sum = 0; 139 if (A) 140 { 141 sum++; 142 sum += CountNode(A->Lchild); 143 sum += CountNode(A->Rchild); 144 } 145 return sum; 146 } 147 148 int CountLeafNode(BTNode* A) 149 {/*统计叶子结点数目*/ 150 int sum = 0; 151 if (A) 152 { 153 if (!A->Lchild && !A->Rchild) 154 { 155 sum++; 156 } 157 sum += CountLeafNode(A->Lchild); 158 sum += CountLeafNode(A->Rchild); 159 } 160 return sum; 161 } 162 163 char Parent(BTNode* A, char ChildNode) 164 {/*求结点的双亲*/ 165 char ParentNode = '\0'; 166 if (A == NULL) 167 { 168 return '\0'; 169 } 170 else if (A->Lchild && A->Lchild->data == ChildNode) 171 { 172 return A->data; 173 } 174 else if (A->Rchild && A->Rchild->data == ChildNode) 175 { 176 return A->data; 177 } 178 else 179 { 180 ParentNode = Parent(A->Lchild, ChildNode); 181 if (ParentNode != '\0') 182 { 183 return ParentNode; 184 } 185 else 186 {/*递归在右子树中找*/ 187 return Parent(A->Rchild, ChildNode); 188 } 189 } 190 }View Code
这篇关于二叉树遍历算法的应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南