(四)Linux内存模型之Sparse Memory Model
2022/1/12 7:06:56
本文主要是介绍(四)Linux内存模型之Sparse Memory Model,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1. 介绍
顺着之前的分析,我们来到了bootmem_init()
函数了,本以为一篇文章能搞定,大概扫了一遍代码之后,我默默的把它拆成了两部分。bootmem_init()
函数代码如下:
void __init bootmem_init(void) { unsigned long min, max; min = PFN_UP(memblock_start_of_DRAM()); max = PFN_DOWN(memblock_end_of_DRAM()); early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); max_pfn = max_low_pfn = max; arm64_numa_init(); /* * Sparsemem tries to allocate bootmem in memory_present(), so must be * done after the fixed reservations. */ arm64_memory_present(); sparse_init(); zone_sizes_init(min, max); memblock_dump_all(); }
这一部分,我们将研究一下Sparse Memory Model
。
在讲Linux内存模型之前,需要补充两个知识点:PFN
和NUMA
。
1.1 physical frame number(PFN)
前面我们讲述过了虚拟地址到物理地址的映射过程,而系统中对内存的管理是以页为单位的:page
:线性地址被分成以固定长度为单位的组,称为页,比如典型的4K大小,页内部连续的线性地址被映射到连续的物理地址中;page frame
:内存被分成固定长度的存储区域,称为页框,也叫物理页。每一个页框会包含一个页,页框的长度和一个页的长度是一致的,在内核中使用struct page
来关联物理页。
如下图,PFN从图片中就能看出来了:
至于__page_to_pfn
这个实现取决于具体的物理内存模型,下文将进行介绍。
1.2 NUMA
UMA: Uniform Memory Access
,所有处理器对内存的访问都是一致的:
从上图中可以看出,当处理器和Core变多的时候,内存带宽将成为瓶颈问题。
NUMA: Non Uniform Memory Access
,非一致性内存访问:
从图中可以看出,每个CPU访问local memory,速度更快,延迟更小。当然,整体的内存构成一个内存池,CPU也能访问remote memory,相对来说速度更慢,延迟更大。目前对NUMA
的了解仅限于此,在内核中会遇到相关的代码,大概知道属于什么范畴就可以了。
2. Linux内存模型
Linux提供了三种内存模型(include/asm-generic/memory_model.h
):
一般处理器架构支持一种或者多种内存模型,这个在编译阶段就已经确定,比如目前在ARM64中,使用的Sparse Memory Model
。
-
Flat Memory
物理内存地址连续,这个也是Linux最初使用的内存模型。当内存有空洞的时候也是可以使用这个模型,只是struct page *mem_map
数组的大小跟物理地址正相关,内存有空洞会造成浪费。 -
Discontiguous Memory
物理内存存在空洞,随着Sparse Memory
的提出,这种内存模型也逐渐被弃用了。 -
Sparse Memory
物理内存存在空洞,并且支持内存热插拔,以section
为单位进行管理,这也是下文将分析的。
Linux三种内存模型下,struct page
到物理page frame
的映射方式也不一样,具体可以查看include/asm-generic/memory_model.h
文件中的__pfn_to_page/__page_to_pfn
定义。
关于内存模型,可以参考Memory: the flat, the discontiguous, and the sparse
3. Sparse Memory
本节分析的是ARM64, UMA(linux4.14中不支持ARM NUMA)
下的Sparse Memory
模型。
3.1 mem_section
在Sparse Memory
模型中,section
是管理内存online/offline
的最小内存单元,在ARM64中,section
的大小为1G,而在Linux内核中,通过一个全局的二维数组struct mem_section **mem_section
来维护映射关系。
函数的调用过程如下所示,主要在arm64_memory_present
中来完成初始化及映射关系的建立:
函数调用结束之后的映射关系如下图所示:
已知一个pfn
时,可以通过__pfn_to_section(pfn)
来最终找到对应的struct page
结构。
3.2 sparse_init
看看sparse_init
函数的调用关系图:
在该函数中,首先分配了usermap,这个usermap与内存的回收机制相关,用4bit的bitmap来描述page block(一个pageblock大小通常为2的次幂,比如MAX_ORDER-1)
的迁移类型:
/* Bit indices that affect a whole block of pages */ enum pageblock_bits { PB_migrate, PB_migrate_end = PB_migrate + 3 - 1, /* 3 bits required for migrate types */ PB_migrate_skip,/* If set the block is skipped by compaction */ /* * Assume the bits will always align on a word. If this assumption * changes then get/set pageblock needs updating. */ NR_PAGEBLOCK_BITS };
sparse memory
模型会为每一个section都分配一个usermap
,最终的物理页面的压缩,迁移等操作,都跟这些位相关,如下图所示:
sparse_init
函数中,另一部分的作用是遍历所有present section
,然后将其映射到vmemmap区域空间。vmemmap
区域空间,在之前的文章中也提到过。执行完后,整体的效果如下图所示:
关于Sparse Memory Model
就先分析这么多,只有结合使用sparse memory
的具体模块时,理解才会更顺畅。
一不小心就容易扣细节,而一旦陷入细节,内核就容易变成魔鬼,太难了。
转载链接:
【原创】(四)Linux内存模型之Sparse Memory Model - LoyenWang - 博客园背景 By 鲁迅 By 高尔基 说明: 1. Kernel版本:4.14 2. ARM64处理器,Contex A53,双核 3. 使用工具:Source Insight 3.5, Visio 1. https://www.cnblogs.com/LoyenWang/p/11523678.html
这篇关于(四)Linux内存模型之Sparse Memory Model的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-12如何创建可引导的 ESXi USB 安装介质 (macOS, Linux, Windows)
- 2024-11-08linux的 vi编辑器中搜索关键字有哪些常用的命令和技巧?-icode9专业技术文章分享
- 2024-11-08在 Linux 的 vi 或 vim 编辑器中什么命令可以直接跳到文件的结尾?-icode9专业技术文章分享
- 2024-10-22原生鸿蒙操作系统HarmonyOS NEXT(HarmonyOS 5)正式发布
- 2024-10-18操作系统入门教程:新手必看的基本操作指南
- 2024-10-18初学者必看:操作系统入门全攻略
- 2024-10-17操作系统入门教程:轻松掌握操作系统基础知识
- 2024-09-11Linux部署Scrapy学习:入门级指南
- 2024-09-11Linux部署Scrapy:入门级指南
- 2024-08-21【Linux】分区向左扩容的方法