Math源码解析
2022/1/14 9:33:44
本文主要是介绍Math源码解析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
里面用到的StrictMath类绝大数都是底层实现的,目前还看不到实现方式,下面就贴出可以看出实现方式的功能
public final class Math{ private Math() {} public static final double E = 2.7182818284590452354; public static final double PI = 3.14159265358979323846; //以度为单位的角度转换为用弧度表示的近似相等的角度 public static double toRadians(double angdeg) { return angdeg / 180.0 * PI; } //转换关系跟上面相反 public static double toDegrees(double angrad) { return angrad * 180.0 / PI; } //取整 //规则:当X为正数时,第一步先X+0.5,然后取整 // 当X为负数时,第一步先X+0.5,第二步观察得到的结果的小数点左边的数为多少,并判断+0.5后得到的数大于0还是小于0,小于0则最后的取整的结果为-(小数点左边的数+1),大于0则取整结果为小数点左边的数 public static int round(float a) { int intBits = Float.floatToRawIntBits(a); int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) >> (FloatConsts.SIGNIFICAND_WIDTH - 1); int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.EXP_BIAS) - biasedExp; if ((shift & -32) == 0) { int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) | (FloatConsts.SIGNIF_BIT_MASK + 1)); if (intBits < 0) { r = -r; } return ((r >> shift) + 1) >> 1; } else { return (int) a; } } //功能跟上面一样 public static long round(double a) { long longBits = Double.doubleToRawLongBits(a); long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 + DoubleConsts.EXP_BIAS) - biasedExp; if ((shift & -64) == 0) { long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK + 1)); if (longBits < 0) { r = -r; } return ((r >> shift) + 1) >> 1; } else { return (long) a; } } //位运算溢出抛异常,否则返回x、y的和 public static int addExact(int x, int y) { int r = x + y; if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; } //功能跟上面相同 public static long addExact(long x, long y) { long r = x + y; // HD 2-12 Overflow iff both arguments have the opposite sign of the result if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("long overflow"); } return r; } //位运算溢出抛异常,否则返回x、y的差 public static int subtractExact(int x, int y) { int r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different than the sign of x if (((x ^ y) & (x ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; } //功能跟上面相同 public static long subtractExact(long x, long y) { long r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different than the sign of x if (((x ^ y) & (x ^ r)) < 0) { throw new ArithmeticException("long overflow"); } return r; } //如果x、y相乘超出int的范围,则抛异常,否则返回相乘结果 public static int multiplyExact(int x, int y) { long r = (long)x * (long)y; if ((int)r != r) { throw new ArithmeticException("integer overflow"); } return (int)r; } //自增1 public static int incrementExact(int a) { if (a == Integer.MAX_VALUE) { throw new ArithmeticException("integer overflow"); } return a + 1; } //功能跟上面相同 public static long incrementExact(long a) { if (a == Long.MAX_VALUE) { throw new ArithmeticException("long overflow"); } return a + 1L; } //自减1 public static int decrementExact(int a) { if (a == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return a - 1; } //功能跟上面相同 public static long decrementExact(long a) { if (a == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return a - 1L; } //自减a public static int negateExact(int a) { if (a == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return -a; } //功能跟上面相同 public static long negateExact(long a) { if (a == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return -a; } //将value强转为int public static int toIntExact(long value) { if ((int)value != value) { throw new ArithmeticException("integer overflow"); } return (int)value; } //返回不小于x、y相除后的商的最大整数 public static int floorDiv(int x, int y) { int r = x / y; // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (r * y != x)) { r--; } return r; } //功能跟上面相同 public static long floorDiv(long x, long y) { long r = x / y; // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (r * y != x)) { r--; } return r; } //返回不大于余数的最大整数 public static int floorMod(int x, int y) { int r = x - floorDiv(x, y) * y; return r; } //功能跟上面相同 public static long floorMod(long x, long y) { return x - floorDiv(x, y) * y; } //取反 public static int abs(int a) { return (a < 0) ? -a : a; } //功能跟上面相同 public static long abs(long a) { return (a < 0) ? -a : a; } //功能跟上面相同 public static float abs(float a) { return (a <= 0.0F) ? 0.0F - a : a; } //功能跟上面相同 public static double abs(double a) { return (a <= 0.0D) ? 0.0D - a : a; } //取最大数 public static int max(int a, int b) { return (a >= b) ? a : b; } //功能跟上面相同 public static long max(long a, long b) { return (a >= b) ? a : b; } private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); //功能跟上面相同 public static float max(float a, float b) { if (a != a) return a;//这个是a为null的情况 if ((a == 0.0f) && (b == 0.0f) && (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { return b; } return (a >= b) ? a : b; } //功能跟上面相同 public static double max(double a, double b) { if (a != a) return a; if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { return b; } return (a >= b) ? a : b; } //取最小数 public static int min(int a, int b) { return (a <= b) ? a : b; } //功能跟上面相同 public static long min(long a, long b) { return (a <= b) ? a : b; } //功能跟上面相同 public static float min(float a, float b) { if (a != a) return a; // a is NaN if ((a == 0.0f) && (b == 0.0f) && (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; } //功能跟上面相同 public static double min(double a, double b) { if (a != a) return a; // a is NaN if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; } //如果是0或者NaN,则原样返回,反之返回有符号数值 public static double signum(double d) { return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); } //功能跟上面相同 public static float signum(float f) { return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); } }
Math类建议了解日常使用率高的功能即可,其他功能需要的时候回头查找jdk即可,不需要全部了解。
另外没有展示的比较重要的功能就是生成随机数的方法random(),效果是生成0~1的double类型数据
这篇关于Math源码解析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-11有哪些好用的家政团队管理工具?
- 2025-01-11营销人必看的GTM五个指标
- 2025-01-11办公软件在直播电商前期筹划中的应用与推荐
- 2025-01-11提升组织效率:上级管理者如何优化跨部门任务分配
- 2025-01-11酒店精细化运营背后的协同工具支持
- 2025-01-11跨境电商选品全攻略:工具使用、市场数据与选品策略
- 2025-01-11数据驱动酒店管理:在线工具的核心价值解析
- 2025-01-11cursor试用出现:Too many free trial accounts used on this machine 的解决方法
- 2025-01-11百万架构师第十四课:源码分析:Spring 源码分析:深入分析IOC那些鲜为人知的细节|JavaGuide
- 2025-01-11不得不了解的高效AI办公工具API