哈夫曼编码
2022/1/15 6:03:38
本文主要是介绍哈夫曼编码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
哈夫曼编码的抽象数据结构
1 typedef struct 2 { 3 int weigth; 4 int parent; 5 int lchild; 6 int rchild; 7 }HTNode, * HuffmanTree;/*动态分配数组存储哈夫曼树*/
求哈夫曼编码的算法
1 void HuffmanCoding(HuffmanTree* HT, char*** HC, int* W, int n) 2 {/* 指针W指向的数组中存放 n 个字符的权值(均>0),构造哈夫曼树HT ,并求出 n 个字符的哈夫曼编码HC*/ 3 int s1 = 0; 4 int s2 = 0; 5 int i = 0; 6 int m = 2 * n - 1; 7 int child = 0; 8 int parent = 0; 9 int start = 0; 10 char* cd = NULL; 11 HuffmanTree P = NULL; 12 if (n <= 1) 13 { 14 return; 15 } 16 17 (*HT) = (HuffmanTree)calloc(m + 1, sizeof(HTNode));/*0号单元未使用*/ 18 for (P = (*HT) + 1, i = 1; i <= n; ++i, ++P, ++W) 19 { 20 P->weigth = *W; 21 } 22 for (i = n + 1; i <= m; ++i)/*建霍夫曼树*/ 23 {/*在 HT[1... i - 1]选择 parent 为 0 且 weigth 值最小的两个结点,其序号分别为 s1 和 s2*/ 24 Select((*HT), i - 1, &s1, &s2); 25 26 (*HT)[s1].parent = i; 27 (*HT)[s2].parent = i; 28 (*HT)[i].lchild = s1; 29 (*HT)[i].rchild = s2; 30 (*HT)[i].weigth = (*HT)[s1].weigth + (*HT)[s2].weigth; 31 } 32 33 /*下面从叶子到根逆向求每个字符的哈夫曼编码*/ 34 (*HC) = (char**)calloc(n + 1, sizeof(char*)); 35 cd = (char*)calloc(n, sizeof(char));/*临时编码数组*/ 36 cd[n - 1] = '\0';/*从后向前逐位求编码,首先放编码结束符*/ 37 for (i = 1; i <= n; ++i) 38 { 39 start = n - 1; 40 for (child = i, parent = (*HT)[i].parent; parent != 0; child = parent, parent = (*HT)[parent].parent) 41 { 42 if ((*HT)[parent].lchild == child) 43 { 44 cd[--start] = '0'; 45 } 46 else 47 { 48 cd[--start] = '1'; 49 } 50 (*HC)[i] = (char*)calloc(n - start, sizeof(char)); 51 strcpy((*HC)[i], &cd[start]); 52 } 53 /*printf("哈夫曼码为:%s\n", HC[i]);*/ 54 } 55 }
在权值数组中寻找权值最小的两个结点
1 void Select(HuffmanTree HT, int N, int* s1, int* s2) 2 {/*在 HT[1... N]选择 parent 为 0 且 weigth 值最小的两个结点,其序号分别为 s1 和 s2*/ 3 int i = 1; 4 int t1 = 0; 5 int t2 = 0; 6 for (i = 1; i <= N; ++i) 7 { 8 if (HT[i].parent == 0) 9 { 10 t1 = i; 11 break; 12 } 13 } 14 if (t1 == 0) 15 { 16 printf("\n最小结点t1异常\n"); 17 } 18 for (i = 1; i <= N; ++i) 19 {/*找t1*/ 20 if (HT[i].parent == 0 && HT[i].weigth < HT[t1].weigth) 21 { 22 t1 = i; 23 } 24 } 25 26 for (i = 1; i <= N; ++i) 27 { 28 if (HT[i].parent == 0 && i != t1) 29 { 30 t2 = i; 31 break; 32 } 33 } 34 if (t2 == 0) 35 { 36 printf("\n最小结点t2异常\n"); 37 } 38 for (i = 1; i <= N; ++i) 39 {/*找t2*/ 40 if (HT[i].parent == 0 && HT[i].weigth < HT[t2].weigth && i != t1) 41 { 42 t2 = i; 43 } 44 } 45 *s1 = t1; 46 *s2 = t2; 47 }View Code
源代码
1 /*------------------------------------------------------------------------- 2 * Name: 哈夫曼编码源代码 3 * Date: 2022.01.15 4 * Author: 吕辉 5 * 在 Visual Studio Community 2022 下测试通过 6 *------------------------------------------------------------------------*/ 7 #define _CRT_SECURE_NO_WARNINGS 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include <string.h> 11 12 typedef struct 13 { 14 int weigth; 15 int parent; 16 int lchild; 17 int rchild; 18 }HTNode, * HuffmanTree;/*动态分配数组存储哈夫曼树*/ 19 20 void HuffmanCoding(HuffmanTree* HT, char*** HC, int* W, int n); 21 void Select(HuffmanTree HT, int N, int* s1, int* s2); 22 23 int main(void) 24 { 25 HuffmanTree HT = NULL; 26 char** HC = NULL; 27 int weight[8] = { 5, 29, 7, 8, 14, 23, 3, 11 }; 28 int* W = weight; 29 int n = 8; 30 int i = 0; 31 32 HuffmanCoding(&HT, &HC, W, n); 33 34 for (i = 1; i <= n; i++) 35 { 36 printf("权值为%2d的哈夫曼码为:%s\n", HT[i].weigth, HC[i]); 37 } 38 39 system("pause"); 40 return 0; 41 } 42 void HuffmanCoding(HuffmanTree* HT, char*** HC, int* W, int n) 43 {/* 指针W指向的数组中存放 n 个字符的权值(均>0),构造哈夫曼树HT ,并求出 n 个字符的哈夫曼编码HC*/ 44 int s1 = 0; 45 int s2 = 0; 46 int i = 0; 47 int m = 2 * n - 1; 48 int child = 0; 49 int parent = 0; 50 int start = 0; 51 char* cd = NULL; 52 HuffmanTree P = NULL; 53 if (n <= 1) 54 { 55 return; 56 } 57 58 (*HT) = (HuffmanTree)calloc(m + 1, sizeof(HTNode));/*0号单元未使用*/ 59 for (P = (*HT) + 1, i = 1; i <= n; ++i, ++P, ++W) 60 { 61 P->weigth = *W; 62 } 63 for (i = n + 1; i <= m; ++i)/*建霍夫曼树*/ 64 {/*在 HT[1... i - 1]选择 parent 为 0 且 weigth 值最小的两个结点,其序号分别为 s1 和 s2*/ 65 Select((*HT), i - 1, &s1, &s2); 66 67 (*HT)[s1].parent = i; 68 (*HT)[s2].parent = i; 69 (*HT)[i].lchild = s1; 70 (*HT)[i].rchild = s2; 71 (*HT)[i].weigth = (*HT)[s1].weigth + (*HT)[s2].weigth; 72 } 73 74 /*下面从叶子到根逆向求每个字符的哈夫曼编码*/ 75 (*HC) = (char**)calloc(n + 1, sizeof(char*)); 76 cd = (char*)calloc(n, sizeof(char));/*临时编码数组*/ 77 cd[n - 1] = '\0';/*从后向前逐位求编码,首先放编码结束符*/ 78 for (i = 1; i <= n; ++i) 79 { 80 start = n - 1; 81 for (child = i, parent = (*HT)[i].parent; parent != 0; child = parent, parent = (*HT)[parent].parent) 82 { 83 if ((*HT)[parent].lchild == child) 84 { 85 cd[--start] = '0'; 86 } 87 else 88 { 89 cd[--start] = '1'; 90 } 91 (*HC)[i] = (char*)calloc(n - start, sizeof(char)); 92 strcpy((*HC)[i], &cd[start]); 93 } 94 /*printf("哈夫曼码为:%s\n", HC[i]);*/ 95 } 96 } 97 98 void Select(HuffmanTree HT, int N, int* s1, int* s2) 99 {/*在 HT[1... N]选择 parent 为 0 且 weigth 值最小的两个结点,其序号分别为 s1 和 s2*/ 100 int i = 1; 101 int t1 = 0; 102 int t2 = 0; 103 for (i = 1; i <= N; ++i) 104 { 105 if (HT[i].parent == 0) 106 { 107 t1 = i; 108 break; 109 } 110 } 111 if (t1 == 0) 112 { 113 printf("\n最小结点t1异常\n"); 114 } 115 for (i = 1; i <= N; ++i) 116 {/*找t1*/ 117 if (HT[i].parent == 0 && HT[i].weigth < HT[t1].weigth) 118 { 119 t1 = i; 120 } 121 } 122 123 for (i = 1; i <= N; ++i) 124 { 125 if (HT[i].parent == 0 && i != t1) 126 { 127 t2 = i; 128 break; 129 } 130 } 131 if (t2 == 0) 132 { 133 printf("\n最小结点t2异常\n"); 134 } 135 for (i = 1; i <= N; ++i) 136 {/*找t2*/ 137 if (HT[i].parent == 0 && HT[i].weigth < HT[t2].weigth && i != t1) 138 { 139 t2 = i; 140 } 141 } 142 *s1 = t1; 143 *s2 = t2; 144 }View Code
这篇关于哈夫曼编码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-12百万架构师第十五课:源码分析:Spring 源码分析:SpringMVC核心原理及源码分析|JavaGuide
- 2025-01-11有哪些好用的家政团队管理工具?
- 2025-01-11营销人必看的GTM五个指标
- 2025-01-11办公软件在直播电商前期筹划中的应用与推荐
- 2025-01-11提升组织效率:上级管理者如何优化跨部门任务分配
- 2025-01-11酒店精细化运营背后的协同工具支持
- 2025-01-11跨境电商选品全攻略:工具使用、市场数据与选品策略
- 2025-01-11数据驱动酒店管理:在线工具的核心价值解析
- 2025-01-11cursor试用出现:Too many free trial accounts used on this machine 的解决方法
- 2025-01-11百万架构师第十四课:源码分析:Spring 源码分析:深入分析IOC那些鲜为人知的细节|JavaGuide