HashMap简介及部分源码分析
2022/1/23 20:07:59
本文主要是介绍HashMap简介及部分源码分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
简介
HashMap简介
HashMap
是基于哈希表的Map接口的一个实现,用于键值对存储,由于实现了Map接口,所以HashMap
允许使用null作为键和值,与其他普通键值使用相同,即null能作为多个键的值,但是只能作为一个键.
HashMap
默认初始化容量为16,之后会进行扩充,每次扩容长度为之前长度的2倍,(HashMap
的大小为2的幂次方)
HashMap
默认参数
// 默认容量16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认负载因子0.75 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 链表节点转换红黑树节点的阈值, 9个节点转 static final int TREEIFY_THRESHOLD = 8; // 红黑树节点转换链表节点的阈值, 6个节点转 static final int UNTREEIFY_THRESHOLD = 6; // 转红黑树时, table的最小长度 static final int MIN_TREEIFY_CAPACITY = 64;
node节点
// 链表节点, 继承自Entry static class Node<K,V> implements Map.Entry<K,V> { final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较 final K key;//键 V value;//值 // 指向下一个节点 Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } // 重写hashCode()方法 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 重写 equals() 方法 public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
数节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // 父 TreeNode<K,V> left; // 左 TreeNode<K,V> right; // 右 TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; // 判断颜色 TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } // 返回根节点 final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; }
底层存储结构
在JDK1.8之前,HashMap
底层采用的是数组加链表形成的散列链表
存储时,HashMap
获取到key的hash值,取模得到存储位置后,判断当前位置是否存有元素,若无元素则存入该元素,
若当前位置有元素,则判断两个元素hash值是否相等,若相等则直接覆盖HashMap
中元素,若hash值不相等,则采用拉链法解决冲突问题,形成同义词链表.
拉链法:
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
JDK1.8之后HashMap
引入了红黑树进行元素存储以提高查询效率,当某个位置同义词链表长度大于8后,HashMap
将会将此链表转为红黑树进行存储
HashMap与hashTable区别
HashMap 允许 key 和 value 为 null,Hashtable 不允许。
HashMap 的默认初始容量为 16,Hashtable 为 11。
HashMap 的扩容为原来的 2 倍,Hashtable 的扩容为原来的 2 倍加 1。
HashMap 是非线程安全的,Hashtable是线程安全的。
HashMap 的 hash 值重新计算过,Hashtable 直接使用 hashCode。
HashMap 去掉了 Hashtable 中的 contains 方法。
HashMap 继承自 AbstractMap 类,Hashtable 继承自 Dictionary 类。
内部源码
构造方法
默认无参构造
/** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
包含另一个Map
public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); }
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size // 未初始化,s为m的实际元素个数 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 计算得到的t大于阈值,则初始化阈值 if (t > threshold) threshold = tableSizeFor(t); } // 已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); // 将m中的所有元素添加至HashMap中 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } }
设置初始化长度
public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); }
设置初始长度与负载因子
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) //参数判断 throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) //负载因子判断 throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); }
put(K key, V value)
put(K key,V value)
方法是HashMap
所提供的唯一的添加方法,另一个方法putVal
是供put
方法调用的一个方法,不提供给用户使用.
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
putVal
判断流程
get(K key)
get(Object key)
方法根据指定的key值返回对应的value,该方法调用了getEntry(Object key)
得到相应的entry
,然后返回entry.getValue()
。因此getEntry()
是算法的核心。 算法思想是首先通过hash()
函数得到对应bucket
的下标,然后依次遍历冲突链表,通过key.equals(k)
方法来判断是否是要找的那个entry
。
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 数组元素相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个节点 if ((e = first.next) != null) { // 在树中get if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 在链表中get do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
resize()扩容方法
resize() 方法用于初始化数组或数组扩容,每次扩容后,容量为原来的 2 倍,并进行数据迁移
由于扩容会导致hash重新分配并且会遍历到所有元素,所以会产生大量耗时.
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
这篇关于HashMap简介及部分源码分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南