分布式锁设计与实践
2022/1/27 6:04:25
本文主要是介绍分布式锁设计与实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
分布式锁设计与实践
-
分布式锁是什么
分布式锁即在分布式环境下锁定共享资源,让请求处理串行化,实际表现为互斥锁。分布式锁可以解决业务中的幂等性问题。
分布式锁是主要是可重入的排它锁,主要具有如下特点:
1)释放锁的节点,一定是持有锁的节点。
2)持有锁的节点宕机了,不会因此而出现死锁,就像synchronized一样,当持有锁的线程异常退出了,锁会被自动释放。
3)排他性,很好理解,一个节点持有锁,其他节点就不能持有了。
4)可重入性,很好理解,持有锁的节点,可以重复持有锁。
-
分布式锁应用场景
两个常见的应用场景:(1)防止用户重复下单 (2)mq消息去重
-
防止用户重复下单
正常情况下用户短时间内肯定是只会下单一次的,但是如果出现了超时用户点击了多次,那么如果前端的同学也没有控制住,这个时候如果服务层面不做任何控制就会出现同时下单多笔的情况,这个肯定是不正常的。当然如果在我们的服务没做水平扩容前我们加个本地锁就搞定了,但是如果我们的服务做了水平扩容:
这个时候就算我们的服务层面有本地锁,也还是不能解决问题的。比如第一次下单请求落在业务逻辑层1,而后面的重复下单落在业务逻辑层2、业务逻辑层3、业务逻辑层N,那我们的重复下单就真的重复下单了,所以这个时候我们需要分布式锁来解决这个问题:
这样每次下单请求过来的时候我们可以使用UserId作为关键信息先去分布式锁服务拿锁,如果能拿到请求继续执行,如果拿不到(被其他进程或线程占用)就丢弃掉当前请求。
-
MQ消息去重
还是用户下单的操作,这一次我们为了提升吞度量采用了水平分层异步架构,用户进行下单操作,这里我假设在网关层生成了订单号(正常情况下应该是专门的订单服务做处理),然后把请求丢到MessageQueue。这种场景下我们如果要对MQ消息去重,一般我们会有两种想法:
发送端去重
消费端去重
我们先来分析发送端去重,如果第一次发送端生成了消息丢到MQ,正常情况下MQ是会返回一个Ack给发送端的,那如果超时了,这个时候发送端重试又生成一个消息丢到MQ,我们可以思考下这种情况下我们能做到去重吗?肯定是做不到的吧,因为2次生成消息就会生成2个不同的MsgId。那我们再来看看消费端去重,其实这个时候我们要想既然MsgId我们不能唯一识别,那什么是我们能唯一识别的?肯定是订单号吧,那我们只要在消费端对订单号加锁就ok了吧。同样的如果没有做水平扩容的情况下我们本地锁是不是就可以搞定?但是水平扩容之后呢?
同样的道理,如果消息第一次被业务逻辑层1消费,后面重复的消息被业务逻辑层2、业务逻辑层3、业务逻辑层N消费,本地锁在这种情况下肯定搞不定。我们也需要分布式锁来做这个事:
这样每次消费消息的时候我们可以使用OrderId作为关键信息先去分布式锁服务拿锁,如果能拿到请求继续执行,如果拿不到(被其他进程或线程占用)就丢弃掉当前消息。
这里有一个需要注意的事情,我们的分布式锁只能处理短时间内的重复请求或者消息,如果过了锁的时间,那锁是无法处理的,这个时候怎么办呢?很简单,使用幂等处理。
通过分析上面2种业务场景,我们可以得出一个结论。这两种场景存在的共性是要处理共享的资源(订单、消息),那解决方案也就是实现共享资源的互斥,共享资源的串行化,那最后转换出来就是锁的问题了,锁又有本地锁和分布式锁。在分布式环境下,本地锁已经不奏效了,只能使用分布式锁。
-
分布式锁设计与实现
-
redis实现分布式锁
-
使用redis唯一工作线程来处理
-
利用 SETNX 和 SETEX
基本命令主要有:
- SETNX(SET If Not Exists):当且仅当 Key 不存在时,则可以设置,否则不做任何动作。
-
SETEX:可以设置超时时间
其原理为:通过 SETNX 设置 Key-Value 来获得锁,随即进入死循环,每次循环判断,如果存在 Key 则继续循环,如果不存在 Key,则跳出循环,当前任务执行完成后,删除 Key 以释放锁。
这种方式可能会导致死锁,为了避免这种情况,需要设置超时时间。
下面,请看具体的实现步骤。
1.创建一个 Maven 工程并在 pom.xml 加入以下依赖:
1 <parent> 2 <groupId>org.springframework.boot</groupId> 3 <artifactId>spring-boot-starter-parent</artifactId> 4 <version>2.0.2.RELEASE</version> 5 <relativePath/> <!-- lookup parent from repository --> 6 </parent> 7 8 <properties> 9 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> 10 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> 11 <java.version>1.8</java.version> 12 </properties> 13 14 <dependencies> 15 <dependency> 16 <groupId>org.springframework.boot</groupId> 17 <artifactId>spring-boot-starter-test</artifactId> 18 <scope>test</scope> 19 </dependency> 20 21 <!-- 开启web--> 22 <dependency> 23 <groupId>org.springframework.boot</groupId> 24 <artifactId>spring-boot-starter-web</artifactId> 25 </dependency> 26 27 <!-- redis--> 28 <dependency> 29 <groupId>org.springframework.boot</groupId> 30 <artifactId>spring-boot-starter-data-redis</artifactId> 31 </dependency> 32 </dependencies>
2.创建启动类 Application.java:
1 @SpringBootApplication 2 public class Application { 3 4 public static void main(String[] args) { 5 SpringApplication.run(Application.class,args); 6 } 7 8 }
3.添加配置文件 application.yml:
1 server: 2 port: 8080 3 spring: 4 redis: 5 host: localhost 6 port: 6379
4.创建全局锁类 Lock.java:
-
/** * 全局锁,包括锁的名称 */ public class Lock { private String name; private String value; public Lock(String name, String value) { this.name = name; this.value = value; } public String getName() { return name; } public String getValue() { return value; } }
5.创建分布式锁类 DistributedLockHandler.java:
@Component public class DistributedLockHandler { private static final Logger logger = LoggerFactory.getLogger(DistributedLockHandler.class); private final static long LOCK_EXPIRE = 30 * 1000L;//单个业务持有锁的时间30s,防止死锁 private final static long LOCK_TRY_INTERVAL = 30L;//默认30ms尝试一次 private final static long LOCK_TRY_TIMEOUT = 20 * 1000L;//默认尝试20s @Autowired private StringRedisTemplate template; /** * 尝试获取全局锁 * * @param lock 锁的名称 * @return true 获取成功,false获取失败 */ public boolean tryLock(Lock lock) { return getLock(lock, LOCK_TRY_TIMEOUT, LOCK_TRY_INTERVAL, LOCK_EXPIRE); } /** * 尝试获取全局锁 * * @param lock 锁的名称 * @param timeout 获取超时时间 单位ms * @return true 获取成功,false获取失败 */ public boolean tryLock(Lock lock, long timeout) { return getLock(lock, timeout, LOCK_TRY_INTERVAL, LOCK_EXPIRE); } /** * 尝试获取全局锁 * * @param lock 锁的名称 * @param timeout 获取锁的超时时间 * @param tryInterval 多少毫秒尝试获取一次 * @return true 获取成功,false获取失败 */ public boolean tryLock(Lock lock, long timeout, long tryInterval) { return getLock(lock, timeout, tryInterval, LOCK_EXPIRE); } /** * 尝试获取全局锁 * * @param lock 锁的名称 * @param timeout 获取锁的超时时间 * @param tryInterval 多少毫秒尝试获取一次 * @param lockExpireTime 锁的过期 * @return true 获取成功,false获取失败 */ public boolean tryLock(Lock lock, long timeout, long tryInterval, long lockExpireTime) { return getLock(lock, timeout, tryInterval, lockExpireTime); } /** * 操作redis获取全局锁 * * @param lock 锁的名称 * @param timeout 获取的超时时间 * @param tryInterval 多少ms尝试一次 * @param lockExpireTime 获取成功后锁的过期时间 * @return true 获取成功,false获取失败 */ public boolean getLock(Lock lock, long timeout, long tryInterval, long lockExpireTime) { try { if (StringUtils.isEmpty(lock.getName()) || StringUtils.isEmpty(lock.getValue())) { return false; } long startTime = System.currentTimeMillis(); do{ if (!template.hasKey(lock.getName())) { ValueOperations<String, String> ops = template.opsForValue(); ops.set(lock.getName(), lock.getValue(), lockExpireTime, TimeUnit.MILLISECONDS); return true; } else {//存在锁 logger.debug("lock is exist!!!"); } if (System.currentTimeMillis() - startTime > timeout) {//尝试超过了设定值之后直接跳出循环 return false; } Thread.sleep(tryInterval); } while (template.hasKey(lock.getName())) ; } catch (InterruptedException e) { logger.error(e.getMessage()); return false; } return false; } /** * 释放锁 */ public void releaseLock(Lock lock) { if (!StringUtils.isEmpty(lock.getName())) { template.delete(lock.getName()); } } }
6.最后创建 HelloController 来测试分布式锁。
@RestController public class LockController { @Autowired private DistributedLockHandler distributedLockHandler; @RequestMapping("/index") public String index(){ Lock lock=new Lock("lynn","min"); if(distributedLockHandler.tryLock(lock)){ try { //为了演示锁的效果,这里睡眠5000毫秒 System.out.println("执行方法"); Thread.sleep(5000); }catch (Exception e){ e.printStackTrace(); } distributedLockHandler.releaseLock(lock); } return "hello world!"; } }
7.测试。
启动 Application.java,连续访问两次浏览器:http://localhost:8080/index,控制台可以发现先打印了一次"执行方法",说明后面一个线程被锁住了,5秒后又再次打印了"执行方法",说明锁被成功释放。
通过这种方式创建的分布式锁存在以下问题:
- 高并发的情况下,如果两个线程同时进入循环,可能导致加锁失败。
-
SETNX 是一个耗时操作,因为它需要判断 Key 是否存在,因为会存在性能问题。
因此,Redis 官方推荐 Redlock 来实现分布式锁。
-
使用Redlock
通过 Redlock 实现分布式锁比其他算法更加可靠,继续改造上一例的代码。
1.pom.xml 增加以下依赖:
<dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.7.0</version> </dependency>
2.增加以下几个类:
1 /** 2 * 获取锁后需要处理的逻辑 3 */ 4 public interface AquiredLockWorker<T> { 5 T invokeAfterLockAquire() throws Exception; 6 } 7 /** 8 * 获取锁管理类 9 */ 10 public interface DistributedLocker { 11 12 /** 13 * 获取锁 14 * @param resourceName 锁的名称 15 * @param worker 获取锁后的处理类 16 * @param <T> 17 * @return 处理完具体的业务逻辑要返回的数据 18 * @throws UnableToAquireLockException 19 * @throws Exception 20 */ 21 <T> T lock(String resourceName, AquiredLockWorker<T> worker) throws UnableToAquireLockException, Exception; 22 23 <T> T lock(String resourceName, AquiredLockWorker<T> worker, int lockTime) throws UnableToAquireLockException, Exception; 24 25 } 26 /** 27 * 异常类 28 */ 29 public class UnableToAquireLockException extends RuntimeException { 30 31 public UnableToAquireLockException() { 32 } 33 34 public UnableToAquireLockException(String message) { 35 super(message); 36 } 37 38 public UnableToAquireLockException(String message, Throwable cause) { 39 super(message, cause); 40 } 41 } 42 /** 43 * 获取RedissonClient连接类 44 */ 45 @Component 46 public class RedissonConnector { 47 RedissonClient redisson; 48 @PostConstruct 49 public void init(){ 50 redisson = Redisson.create(); 51 } 52 53 public RedissonClient getClient(){ 54 return redisson; 55 } 56 57 } 58 @Component 59 public class RedisLocker implements DistributedLocker{ 60 61 private final static String LOCKER_PREFIX = "lock:"; 62 63 @Autowired 64 RedissonConnector redissonConnector; 65 @Override 66 public <T> T lock(String resourceName, AquiredLockWorker<T> worker) throws InterruptedException, UnableToAquireLockException, Exception { 67 68 return lock(resourceName, worker, 100); 69 } 70 71 @Override 72 public <T> T lock(String resourceName, AquiredLockWorker<T> worker, int lockTime) throws UnableToAquireLockException, Exception { 73 RedissonClient redisson= redissonConnector.getClient(); 74 RLock lock = redisson.getLock(LOCKER_PREFIX + resourceName); 75 // Wait for 100 seconds seconds and automatically unlock it after lockTime seconds 76 boolean success = lock.tryLock(100, lockTime, TimeUnit.SECONDS); 77 if (success) { 78 try { 79 return worker.invokeAfterLockAquire(); 80 } finally { 81 lock.unlock(); 82 } 83 } 84 throw new UnableToAquireLockException(); 85 } 86 }
3.修改LockController:
@RestController public class HelloController { @Autowired private DistributedLocker distributedLocker; @RequestMapping("index") public String index()throws Exception{ distributedLocker.lock("test",new AquiredLockWorker<Object>() { @Override public Object invokeAfterLockAquire() { try { System.out.println("执行方法!"); Thread.sleep(5000); }catch (Exception e){ e.printStackTrace(); } return null; } }); return "hello world!"; } }
4.按照上节的测试方法进行测试,我们发现分布式锁也生效了。
Redlock 是 Redis 官方推荐的一种方案,因此可靠性比较高。
-
Zookeeper实现分布式锁
-
节点概念
-
让我们来回顾一下Zookeeper节点的概念:
Zookeeper的数据存储结构就像一棵树,这棵树由节点组成,这种节点叫做Znode。
Znode分为四种类型:
1.持久节点 (PERSISTENT)
默认的节点类型。创建节点的客户端与zookeeper断开连接后,该节点依旧存在 。
2.持久节点顺序节点(PERSISTENT_SEQUENTIAL)
所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号:
3.临时节点(EPHEMERAL)
和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除:
4.临时顺序节点(EPHEMERAL_SEQUENTIAL)
顾名思义,临时顺序节点结合和临时节点和顺序节点的特点:在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号;当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。
-
zookeeper分布式锁的原理
Zookeeper分布式锁恰恰应用了临时顺序节点。具体如何实现呢?让我们来看一看详细步骤:
获取锁
首先,在Zookeeper当中创建一个持久节点ParentLock。当第一个客户端想要获得锁时,需要在ParentLock这个节点下面创建一个临时顺序节点 Lock1。
之后,Client1查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock1是不是顺序最靠前的一个。如果是第一个节点,则成功获得锁。
这时候,如果再有一个客户端 Client2 前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock2。
Client2查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock2是不是顺序最靠前的一个,结果发现节点Lock2并不是最小的。这意味着Client2抢锁失败,进入了等待状态。
于是,Client2向排序仅比它靠前的节点Lock1注册Watcher,用于监听Lock1节点是否存在。
这时候,如果又有一个客户端Client3前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock3。
Client3查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock3是不是顺序最靠前的一个,结果同样发现节点Lock3并不是最小的。
于是,Client3向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock2节点是否存在。这意味着Client3同样抢锁失败,进入了等待状态。
这样一来,Client1得到了锁,Client2监听了Lock1,Client3监听了Lock2。这恰恰形成了一个等待队列,很像是Java当中ReentrantLock所依赖的
释放锁
释放锁分为两种情况:
1.任务完成,客户端显示释放
当任务完成时,Client1会显示调用删除节点Lock1的指令。
2.任务执行过程中,客户端崩溃
获得锁的Client1在任务执行过程中,如果Duang的一声崩溃,则会断开与Zookeeper服务端的链接。根据临时节点的特性,相关联的节点Lock1会随之自动删除。
由于Client2一直监听着Lock1的存在状态,当Lock1节点被删除,Client2会立刻收到通知。这时候Client2会再次查询ParentLock下面的所有节点,确认自己创建的节点Lock2是不是目前最小的节点。如果是最小,则Client2顺理成章获得了锁。
同理,如果Client2也因为任务完成或者节点崩溃而删除了节点Lock2,那么Client3就会接到通知。
最终,Client3成功得到了锁。
-
代码实现
创建 DistributedLock 类:
public class DistributedLock implements Lock, Watcher{ private ZooKeeper zk; private String root = "/ParentLock";//根 private String lockName;//竞争资源的标志 private String waitNode;//等待前一个锁 private String myZnode;//当前锁 private CountDownLatch latch;//计数器 private CountDownLatch connectedSignal=new CountDownLatch(1); private int sessionTimeout = 30000; /** * 创建分布式锁,使用前请确认config配置的zookeeper服务可用 * @param config localhost:2181 * @param lockName 竞争资源标志,lockName中不能包含单词_lock_ */ public DistributedLock(String config, String lockName){ this.lockName = lockName; // 创建一个与服务器的连接 try { zk = new ZooKeeper(config, sessionTimeout, this); connectedSignal.await(); Stat stat = zk.exists(root, false);//此去不执行 Watcher if(stat == null){ // 创建根节点 zk.create(root, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); } } catch (IOException e) { throw new LockException(e); } catch (KeeperException e) { throw new LockException(e); } catch (InterruptedException e) { throw new LockException(e); } } /** * zookeeper节点的监视器 */ public void process(WatchedEvent event) { //建立连接用 if(event.getState()== Event.KeeperState.SyncConnected){ connectedSignal.countDown(); return; } //其他线程放弃锁的标志 if(this.latch != null) { this.latch.countDown(); } } public void lock() { try { if(this.tryLock()){ System.out.println("Thread " + Thread.currentThread().getId() + " " +myZnode + " get lock true"); return; } else{ waitForLock(waitNode, sessionTimeout);//等待锁 } } catch (KeeperException e) { throw new LockException(e); } catch (InterruptedException e) { throw new LockException(e); } } public boolean tryLock() { try { String splitStr = "_lock_"; if(lockName.contains(splitStr)) throw new LockException("lockName can not contains \\u000B"); //创建临时子节点 myZnode = zk.create(root + "/" + lockName + splitStr, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE,CreateMode.EPHEMERAL_SEQUENTIAL); System.out.println(myZnode + " is created "); //取出所有子节点 List<String> subNodes = zk.getChildren(root, false); //取出所有lockName的锁 List<String> lockObjNodes = new ArrayList<String>(); for (String node : subNodes) { String _node = node.split(splitStr)[0]; if(_node.equals(lockName)){ lockObjNodes.add(node); } } Collections.sort(lockObjNodes); if(myZnode.equals(root+"/"+lockObjNodes.get(0))){ //如果是最小的节点,则表示取得锁 System.out.println(myZnode + "==" + lockObjNodes.get(0)); return true; } //如果不是最小的节点,找到比自己小1的节点 String subMyZnode = myZnode.substring(myZnode.lastIndexOf("/") + 1); waitNode = lockObjNodes.get(Collections.binarySearch(lockObjNodes, subMyZnode) - 1);//找到前一个子节点 } catch (KeeperException e) { throw new LockException(e); } catch (InterruptedException e) { throw new LockException(e); } return false; } public boolean tryLock(long time, TimeUnit unit) { try { if(this.tryLock()){ return true; } return waitForLock(waitNode,time); } catch (Exception e) { e.printStackTrace(); } return false; } private boolean waitForLock(String lower, long waitTime) throws InterruptedException, KeeperException { Stat stat = zk.exists(root + "/" + lower,true);//同时注册监听。 //判断比自己小一个数的节点是否存在,如果不存在则无需等待锁,同时注册监听 if(stat != null){ System.out.println("Thread " + Thread.currentThread().getId() + " waiting for " + root + "/" + lower); this.latch = new CountDownLatch(1); this.latch.await(waitTime, TimeUnit.MILLISECONDS);//等待,这里应该一直等待其他线程释放锁 this.latch = null; } return true; } public void unlock() { try { System.out.println("unlock " + myZnode); zk.delete(myZnode,-1); myZnode = null; zk.close(); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } public void lockInterruptibly() throws InterruptedException { this.lock(); } public Condition newCondition() { return null; } public class LockException extends RuntimeException { private static final long serialVersionUID = 1L; public LockException(String e){ super(e); } public LockException(Exception e){ super(e); } } }
-
ETCD实现分布式锁
ETCD实现分布式锁内容较多,篇幅太长,以后专题介绍
-
三种分布式锁比较
-
CAP定律
2000年,Eric Brewer教授提出CAP猜想,2年后,被Seth Gilbert和Nancy Lynch大佬所证明。
CAP是指:Consistency(强一致性),Availability(可用性),Partition tolerance(分区容错性),分布式系统,三者同时满足两者。
由于分布式系统中,一定是存在分区的,所有cap模型中常用的只能是是:AP或CP模型了。
-
@Component
publicclassDistributedLockHandler {
privatestatic final Logger logger = LoggerFactory.getLogger(DistributedLockHandler.class);
private final static long LOCK_EXPIRE=30*1000L;//单个业务持有锁的时间30s,防止死锁
private final static long LOCK_TRY_INTERVAL=30L;//默认30ms尝试一次
private final static long LOCK_TRY_TIMEOUT=20*1000L;//默认尝试20s
@Autowired
private StringRedisTemplate template;
/**
* 尝试获取全局锁
*
* @param lock 锁的名称
* @return true 获取成功,false获取失败
*/
public boolean tryLock(Lock lock) {
returngetLock(lock, LOCK_TRY_TIMEOUT,LOCK_TRY_INTERVAL,LOCK_EXPIRE);
}
/**
* 尝试获取全局锁
*
* @param lock 锁的名称
* @param timeout 获取超时时间单位ms
* @return true 获取成功,false获取失败
*/
public boolean tryLock(Lock lock, long timeout) {
returngetLock(lock, timeout, LOCK_TRY_INTERVAL,LOCK_EXPIRE);
}
/**
* 尝试获取全局锁
*
* @param lock 锁的名称
* @param timeout 获取锁的超时时间
* @param tryInterval 多少毫秒尝试获取一次
* @return true 获取成功,false获取失败
*/
public boolean tryLock(Lock lock, long timeout, long tryInterval) {
returngetLock(lock, timeout, tryInterval, LOCK_EXPIRE);
}
/**
* 尝试获取全局锁
*
* @param lock 锁的名称
* @param timeout 获取锁的超时时间
* @param tryInterval 多少毫秒尝试获取一次
* @param lockExpireTime 锁的过期
* @return true 获取成功,false获取失败
*/
public boolean tryLock(Lock lock, long timeout, long tryInterval, long lockExpireTime) {
returngetLock(lock, timeout, tryInterval, lockExpireTime);
}
/**
* 操作redis获取全局锁
*
* @param lock 锁的名称
* @param timeout 获取的超时时间
* @param tryInterval 多少ms尝试一次
* @param lockExpireTime 获取成功后锁的过期时间
* @return true 获取成功,false获取失败
*/
public boolean getLock(Lock lock, long timeout, long tryInterval, long lockExpireTime) {
try {
if (StringUtils.isEmpty(lock.getName())|| StringUtils.isEmpty(lock.getValue())) {
returnfalse;
}
long startTime = System.currentTimeMillis();
do{
if (!template.hasKey(lock.getName())) {
ValueOperations<String, String> ops = template.opsForValue();
ops.set(lock.getName(), lock.getValue(), lockExpireTime, TimeUnit.MILLISECONDS);
returntrue;
} else {//存在锁
logger.debug("lock is exist!!!");
}
if (System.currentTimeMillis()- startTime > timeout) {//尝试超过了设定值之后直接跳出循环
returnfalse;
}
Thread.sleep(tryInterval);
}
while (template.hasKey(lock.getName())) ;
} catch (InterruptedException e) {
logger.error(e.getMessage());
returnfalse;
}
returnfalse;
}
/**
* 释放锁
*/
publicvoidreleaseLock(Lock lock) {
if (!StringUtils.isEmpty(lock.getName())) {
template.delete(lock.getName());
}
}
}
这篇关于分布式锁设计与实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-21《鸿蒙HarmonyOS应用开发从入门到精通(第2版)》简介
- 2024-12-21后台管理系统开发教程:新手入门全指南
- 2024-12-21后台开发教程:新手入门及实战指南
- 2024-12-21后台综合解决方案教程:新手入门指南
- 2024-12-21接口模块封装教程:新手必备指南
- 2024-12-21请求动作封装教程:新手必看指南
- 2024-12-21RBAC的权限教程:从入门到实践
- 2024-12-21登录鉴权实战:新手入门教程
- 2024-12-21动态权限实战入门指南
- 2024-12-21功能权限实战:新手入门指南