2.python数据分析之二分类模型

2022/1/27 11:05:28

本文主要是介绍2.python数据分析之二分类模型,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

  对一个表格类数据集进行数据分析,常常有以下几个步骤:

1.数据总览

  • 读取数据集并了解数据集大小,原始特征维度
  • 查看特征的数据类型和基本统计量

2.缺失值和唯一值

  • 查看数据缺失情况
  • 查看唯一值特征情况

3.深入数据

  • 类别型数据
  • 数值型数据(离散型、连续型)

4.数据间相关关系

  • 特征与特征之间
  • 特征与目标变量之间

5.用pandas_profilling生成数据报告

   以一个零售风控二分类的比赛数据集为例,进行数据分析

1.总览

print(train.shape)
print(test.shape)
print(train.columns)
train.info()
data_train.describe()
(800000, 47)
(200000, 46)
Index(['id', 'loanAmnt', 'term', 'interestRate', 'installment', 'grade',
       'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership',
       'annualIncome', 'verificationStatus', 'issueDate', 'isDefault',
       'purpose', 'postCode', 'regionCode', 'dti', 'delinquency_2years',
       'ficoRangeLow', 'ficoRangeHigh', 'openAcc', 'pubRec',
       'pubRecBankruptcies', 'revolBal', 'revolUtil', 'totalAcc',
       'initialListStatus', 'applicationType', 'earliesCreditLine', 'title',
       'policyCode', 'n0', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8',
       'n9', 'n10', 'n11', 'n12', 'n13', 'n14'],
      dtype='object')

对于二分类问题,还应该看下正负样本的比例,看是否存在类别不平衡问题。
train['isDefault'].value_counts()
0    640390
1    159610
Name: isDefault, dtype: int64

2.缺失情况

查看有多少列存在缺失值以及缺失率,对于缺失值非常多的列可以考虑删除,缺失很少的列考虑进行填充

train.isnull().any().sum()
22
missing=train.isnull().sum()/len(train)
missing=missing[missing>0]
missing.sort_values(inplace=True)
missing.plot.bar()

 

 

 查看是否有特征只有唯一值,若有,后续特征工程考虑删掉此变量

one_value_col=[col for col in train.columns if train[col].nunique()<=1]
one_value_col
['policyCode']

3.深入数据类型

首先查看有多少列是数值型变量、多少列是分类型变量

numerical_fea=list(train.select_dtypes(exclude=['object']).columns)
category_fea=list(filter(lambda x:x not in numerical_fea,list(train.columns)))
print(len(numerical_fea))
print(len(category_fea))
print(category_fea)
print(numerical_fea)
42
5
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
['id', 'loanAmnt', 'term', 'interestRate', 'installment', 'employmentTitle', 'homeOwnership', 'annualIncome', 
'verificationStatus', 'isDefault', 'purpose', 'postCode', 'regionCode', 'dti', 'delinquency_2years', 'ficoRangeLow', 
'ficoRangeHigh', 'openAcc', 'pubRec', 'pubRecBankruptcies', 'revolBal', 'revolUtil', 'totalAcc', 'initialListStatus', 
'applicationType', 'title', 'policyCode', 'n0', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8', 'n9', 'n10', 'n11', 'n12', 'n13', 'n14']

可以看出在46列特征中,只有5个是object类型(后续特征工程需要进行转换)

for col in category_fea:
    temp=train[col].value_counts()
    plt.figure(figsize=(10,6))
    sns.barplot(x=temp.index,y=temp.values)
    plt.xlabel(str(col))
    plt.show()
plt.close('all')

 

 

 

 

其次对于数值型变量,需要划分离散型和连续型。此处定义变量取值小于10个即为离散型。

def get_numerical_serial_fea(data,feas):
    numerical_serial_fea=[]
    numerical_noserial_fea=[]
    for fea in feas:
        temp=data[fea].nunique()
        if temp<=10:
            numerical_noserial_fea.append(fea)
            continue 
        numerical_serial_fea.append(fea)
    return numerical_serial_fea,numerical_noserial_fea

numerical_serial_fea,numerical_noserial_fea=get_numerical_serial_fea(train,numerical_fea)

 

对于离散型变量,着重分析是否存在严重偏斜(大多数样本都取相同数值);

#绘图查看离散型变量分布
for col in numerical_noserial_fea:
    temp=train[col].value_counts()
    plt.figure()
    sns.barplot(x=temp.index,y=temp.values)
    plt.xlabel(str(col))
    plt.show()
plt.close('all')
       

 

对于连续型变量,着重分析数据是否服从正态分布(或对数正态分布),对于偏态的数据可能会影响预测结果。

#绘图查看连续型变量分布
f = pd.melt(train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f, col="variable",  col_wrap=4, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

4.数据间相关关系

首先探究变量之间、变量和目标变量之间的相关关系

corr=train.corr()
sns.heatmap(corr, annot=False)
plt.show()

 

 

还可以根据y值不同查看各个变量的分布

loan_def=train.loc[train['isDefault']==1]
loan_nodef=train.loc[train['isDefault']==0]
fig,((ax1,ax2),(ax3,ax4))=plt.subplots(2,2,figsize=(15,8))
loan_def.groupby('grade').grade.count().plot(kind='barh',ax=ax1,title='Count of grade fraud')
loan_nodef.groupby('grade').grade.count().plot(kind='barh',ax=ax2,title='Count of grade fraud')
loan_def.groupby('employmentLength').employmentLength.count().plot(kind='barh',ax=ax3,title='Count of grade fraud')
loan_nodef.groupby('employmentLength').employmentLength.count().plot(kind='barh',ax=ax4,title='Count of grade fraud')
plt.show()

fig,((ax1,ax2))=plt.subplots(1,2,figsize=(15,6))
train.loc[train['isDefault'] == 1]['loanAmnt'].plot(
            kind='hist',
            bins=100,
            title='Log Loan Amt - Fraud',
            color='r',
            ax=ax1)
train.loc[train['isDefault'] == 0]['loanAmnt'].plot(
            kind='hist',
            bins=100,
            title='Log Loan Amt - Not Fraud',
            color='b',
            ax=ax2)

 

5.用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(train)
pfr.to_file("./example.html")

6.其他

查看日期格式的数据

#转化格式  issueDateDT特征表示数据日期离数据集中日期最早的日期(2007-06-01)的天数
day = pd.to_datetime(train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
day = day.apply(lambda x: x-startdate).dt.days
sns.histplot(day)

 

数据透视表

pivot=pd.pivot_table(train,index=['grade'],columns=['employmentLength'],values=['loanAmnt'],
                    aggfunc=np.mean)
pivot

loanAmnt
employmentLength1 year10+ years2 years3 years4 years5 years6 years7 years8 years9 years< 1 year
grade           
A 13335.898602 14639.775562 13388.455829 13486.865618 13553.706061 13496.995001 13775.733802 13935.131159 14192.510565 14072.881276 13560.589568
B 12486.311108 14191.576561 12655.767868 12852.254751 12997.182897 13048.167405 13135.203245 13318.696946 13460.523945 13513.865997 12994.001504
C 13093.052072 15527.287529 13383.550540 13587.211321 13731.955067 13860.520936 14098.561372 14395.124677 14413.680358 14699.868190 13483.717789
D 14204.809266 16918.674549 14418.175926 14476.062066 14837.774220 14834.854212 15224.665884 15742.203467 15625.839781 15967.309875 14230.622259
E 16304.007848 19339.688764 16762.507469 16840.061266 17080.681138 17478.838499 17938.082852 17567.287968 17981.827812 18108.666970 16209.714997
F 17570.015699 20787.572663 17880.975030 18417.187500 18881.518876 19196.168342 19050.279018 19315.302691 19507.407407 19630.162338 18335.909091
G 18475.923295 22099.393271 20240.042827


这篇关于2.python数据分析之二分类模型的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程