一个符号求导的小程序
2022/1/28 11:35:48
本文主要是介绍一个符号求导的小程序,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
这两天写了一个符号求导的程序,没有任何化简,代码质量比较差。以后可以考虑把每个项coefficient * x^index单独提出来,把coefficient和index单独作为未知数x的属性。
该程序目前只支持多项式求导。
#include<bits/stdc++.h> using namespace std; const static int bign = 10033; enum tokenType { Openbracket = 1, CloseBracket, Variable, ConstVar, OpType }; typedef pair<int, string> token; typedef vector<token> tokenlist; int mapbracket[bign]; int bstack[bign]; int mtop; inline int getType(char c) { if (c == '(') { return 1; } else if (c == ')') { return 2; } else if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z')) { return 3; } else if (c >= '0' && c <= '9') { return 4; } else if (c == '+' || c == '-' || c == '*' || c == '/' || c == '^') { return 5; } else if (c == ' ' || c == '\n' || c == ';') { return 6; } } void LexErrorOccur() { printf("Lexical Error\n"); } inline int matoi(string &numstr) { int ret = 0; for (int i = 0; i < numstr.length(); i++) { ret = ret * 10 + numstr[i] - '0'; } return ret; } inline string tokenToString(tokenlist u,int n1) { string ret = ""; for (int i = 0; i < n1; i++) { ret += u[i].second; } return ret; } void LexAnalysis(string& Expr, tokenlist& tlist) { string lasttoken = ""; int lasttype = 0; for (char c : Expr) { int typec = getType(c); if (typec == 1 || typec == 2 || typec == 5 || typec == 6) { if (lasttype > 0) { tlist.push_back(make_pair(lasttype, lasttoken)); lasttype = 0; lasttoken = ""; } } if (typec == 1 || typec == 2) { lasttype = typec; lasttoken.push_back(c); tlist.push_back(make_pair(lasttype, lasttoken)); lasttype = 0; lasttoken = ""; } else { if (typec == 4) { if (lasttype != 3) { lasttype = 4; } lasttoken.push_back(c); } else if (typec == 3) { if (lasttype == 4) LexErrorOccur(); lasttype = 3; lasttoken.push_back(c); } else if (typec == 5) { lasttype = 5; lasttoken.push_back(c); tlist.push_back(make_pair(lasttype, lasttoken)); lasttype = 0; lasttoken = ""; } } } if (lasttype != 0) { tlist.push_back(make_pair(lasttype, lasttoken)); } } bool testzero(token &u) { if (u.first == tokenType::ConstVar && u.second == "0") { return true; } return false; } int mDerivative(tokenlist& Expr, int b1, int e1, tokenlist& res, int resb) { assert(b1 >= 0 && b1 <= e1 && e1 <= Expr.size()); if (b1 == e1) return resb; //vector<pair<int, string> > ret; //ret.push_back(make_pair(0, "+")); if (e1 - b1 >= 2 && Expr[b1].first == tokenType::Openbracket && Expr[e1 - 1].first == tokenType::CloseBracket && mapbracket[e1 - 1] == b1) { return mDerivative(Expr, b1 + 1, e1 - 1, res, resb); } int inbracket = 0; for (int i = b1; i < e1; i++) { if (Expr[i].first == tokenType::OpType) { char opchar = Expr[i].second[0]; if ((opchar == '+' || opchar == '-') && inbracket == 0) { resb = mDerivative(Expr, b1, i, res, resb); res[resb++] = make_pair(tokenType::OpType, Expr[i].second);//derivative + & - rule resb = mDerivative(Expr, i + 1, e1, res, resb); return resb; } } else if (Expr[i].first == tokenType::Openbracket) { inbracket++; } else if (Expr[i].first == tokenType::CloseBracket) { inbracket--; } } for (int i = e1 - 1; i >= b1; i--) { if (Expr[i].first == tokenType::OpType) { char opchar = Expr[i].second[0]; if (opchar == '*' && inbracket == 0) // derivative * rule { res[resb++] = make_pair(tokenType::Openbracket, "("); resb = mDerivative(Expr, b1, i, res, resb); res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "*"); res[resb++] = make_pair(tokenType::Openbracket, "("); for (int j = i + 1; j < e1; j++) { res[resb++] = Expr[j]; } res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "+"); res[resb++] = make_pair(tokenType::Openbracket, "("); for (int j = b1; j < i; j++) { res[resb++] = Expr[j]; } res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "*"); res[resb++] = make_pair(tokenType::Openbracket, "("); resb = mDerivative(Expr, i + 1, e1, res, resb); res[resb++] = make_pair(tokenType::CloseBracket, ")"); return resb; } if (opchar == '/' && inbracket == 0) //derivative / rule { res[resb++] = make_pair(tokenType::Openbracket, "("); res[resb++] = make_pair(tokenType::Openbracket, "("); resb = mDerivative(Expr, b1, i, res, resb); res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "*"); res[resb++] = make_pair(tokenType::Openbracket, "("); for (int j = i + 1; j < e1; j++) { res[resb++] = Expr[j]; } res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "-"); res[resb++] = make_pair(tokenType::Openbracket, "("); for (int j = b1; j < i; j++) { res[resb++] = Expr[j]; } res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "*"); res[resb++] = make_pair(tokenType::Openbracket, "("); resb = mDerivative(Expr, i + 1, e1, res, resb); res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "/"); res[resb++] = make_pair(tokenType::Openbracket, "("); for (int j = i + 1; j < e1; j++) { res[resb++] = Expr[j]; } res[resb++] = make_pair(tokenType::CloseBracket, ")"); res[resb++] = make_pair(tokenType::OpType, "^"); res[resb++] = make_pair(tokenType::ConstVar, "2"); return resb; } } else if (Expr[i].first == tokenType::Openbracket) { inbracket++; } else if (Expr[i].first == tokenType::CloseBracket) { inbracket--; } } if (Expr[b1].first == tokenType::Variable) { if (e1 - b1 >= 3) { int indexn = matoi(Expr[e1 - 1].second); res[resb++] = make_pair(tokenType::ConstVar, to_string(indexn)); res[resb++] = make_pair(tokenType::OpType, "*"); res[resb++] = make_pair(tokenType::Variable, Expr[b1].second); res[resb++] = make_pair(tokenType::OpType, "^"); res[resb++] = make_pair(tokenType::ConstVar, to_string(indexn - 1)); } else { res[resb++] = make_pair(tokenType::ConstVar, "1"); } } else { res[resb++] = make_pair(tokenType::ConstVar, "0"); } return resb; } void solve() { string Expr = "(x^3 + 2 * x^2 + 19 * x)/(x^2 + x)"; tokenlist tlist, res(bign); LexAnalysis(Expr, tlist); int tn = tlist.size(); memset(mapbracket, -1, tn * sizeof(int)); for (int i = 0; i < tn; i++) { if (tlist[i].first == 1) bstack[mtop++] = i; if (tlist[i].first == 2) { assert(mtop > 0); mapbracket[i] = bstack[--mtop]; } } assert(mtop == 0); int ressize = mDerivative(tlist, 0, tlist.size(), res, 0); string restr = tokenToString(res, ressize); cout << restr << endl; } int main() { solve(); }
这篇关于一个符号求导的小程序的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-20微信小程序开发入门指南
- 2024-12-20小程序 createCameraContext() 怎么实现识别条形码功能?-icode9专业技术文章分享
- 2024-11-22微信小程序的接口信息py可以抓到吗?-icode9专业技术文章分享
- 2024-11-22怎样解析出微信小程序二维码带的参数?-icode9专业技术文章分享
- 2024-11-22微信小程序二维码怎样解析成链接?-icode9专业技术文章分享
- 2024-11-22微信小程序接口地址的域名需要怎么设置?-icode9专业技术文章分享
- 2024-11-22微信小程序的业务域名有什么作用-icode9专业技术文章分享
- 2024-11-22微信小程序 image有类似html5的onload吗?-icode9专业技术文章分享
- 2024-11-22微信小程序中怎么实现文本内容超出行数后显示省略号?-icode9专业技术文章分享
- 2024-11-22微信小程序怎么实现分享样式定制和图片定制功能?-icode9专业技术文章分享