PyTorch搭建小实践
2022/1/29 6:07:47
本文主要是介绍PyTorch搭建小实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
PyTorch搭建小实践
import torch from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential from torch.utils.tensorboard import SummaryWriter class Model(nn.Module): def __init__(self): super(Model, self).__init__() # self.conv1 = Conv2d(3, 32, 5, padding = 2) # self.maxpool1 = MaxPool2d(2) # self.conv2 = Conv2d(32, 32, 5, padding = 2) # self.maxpool2 = MaxPool2d(2) # self.conv3 = Conv2d(32, 64, 5, padding = 2) # self.maxpool3 = MaxPool2d(2) # self.flatten = Flatten() # self.linear1 = Linear(1024, 64) # self.linear2 = Linear(64, 10) self.model1 = Sequential( Conv2d(3, 32, 5, padding = 2), MaxPool2d(2), Conv2d(32, 32, 5, padding = 2), MaxPool2d(2), Conv2d(32, 64, 5, padding = 2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): # x = self.conv1(x) # x = self.maxpool1(x) # x = self.conv2(x) # x = self.maxpool2(x) # x = self.conv3(x) # x = self.maxpool3(x) # x = self.flatten(x) # x = self.linear1(x) # x = self.linear2(x) x = self.model1(x) return x model = Model() print(model) input = torch.ones((64, 3, 32, 32)) output = model(input) print(output.shape) writer = SummaryWriter("logs_seq") writer.add_graph(model, input) writer.close()
这篇关于PyTorch搭建小实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-10Rakuten 乐天积分系统从 Cassandra 到 TiDB 的选型与实战
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用