PyTorch搭建小实践

2022/1/29 6:07:47

本文主要是介绍PyTorch搭建小实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

PyTorch搭建小实践

pytorch在这里插入图片描述

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # self.conv1 = Conv2d(3, 32, 5, padding = 2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32, 32, 5, padding = 2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32, 64, 5, padding = 2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024, 64)
        # self.linear2 = Linear(64, 10)
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding = 2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding = 2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding = 2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x


model = Model()
print(model)
input = torch.ones((64, 3, 32, 32))
output = model(input)
print(output.shape)

writer = SummaryWriter("logs_seq")
writer.add_graph(model, input)
writer.close()


这篇关于PyTorch搭建小实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程