PyTorch搭建小实践
2022/1/29 6:07:47
本文主要是介绍PyTorch搭建小实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
PyTorch搭建小实践
import torch from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential from torch.utils.tensorboard import SummaryWriter class Model(nn.Module): def __init__(self): super(Model, self).__init__() # self.conv1 = Conv2d(3, 32, 5, padding = 2) # self.maxpool1 = MaxPool2d(2) # self.conv2 = Conv2d(32, 32, 5, padding = 2) # self.maxpool2 = MaxPool2d(2) # self.conv3 = Conv2d(32, 64, 5, padding = 2) # self.maxpool3 = MaxPool2d(2) # self.flatten = Flatten() # self.linear1 = Linear(1024, 64) # self.linear2 = Linear(64, 10) self.model1 = Sequential( Conv2d(3, 32, 5, padding = 2), MaxPool2d(2), Conv2d(32, 32, 5, padding = 2), MaxPool2d(2), Conv2d(32, 64, 5, padding = 2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): # x = self.conv1(x) # x = self.maxpool1(x) # x = self.conv2(x) # x = self.maxpool2(x) # x = self.conv3(x) # x = self.maxpool3(x) # x = self.flatten(x) # x = self.linear1(x) # x = self.linear2(x) x = self.model1(x) return x model = Model() print(model) input = torch.ones((64, 3, 32, 32)) output = model(input) print(output.shape) writer = SummaryWriter("logs_seq") writer.add_graph(model, input) writer.close()
这篇关于PyTorch搭建小实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享