c语言自学教程——深度剖析数据在内存中的存储

2022/1/30 7:07:07

本文主要是介绍c语言自学教程——深度剖析数据在内存中的存储,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

  • 1. 数据类型介绍
    • 1.1 类型的基本归类
  • 2. 整形在内存中的存储
    • 2.1 原码、反码、补码
    • 2.2 大小端介绍
    • 2.3 练习
  • 3. 浮点型在内存中的存储
    • 3.1 一个例子
    • 3.2 浮点数存储规则
    • 3.3 解释前面的题目:

1. 数据类型介绍

char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数

类型的意义:

  1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  2. 如何看待内存空间的视角

1.1 类型的基本归类

整形家族:

char
unsigned char
signed char

short
unsigned short [int]
signed short [int]

int
unsigned int
signed int

long
unsigned long [int]
signed long [int]

浮点数家族:

float
double

构造类型:

数组类型
结构体类型 struct
枚举类型 enum
联合类型 union

指针类型

int *pi;
char *pc;
float* pf;
void* pv;

空类型:

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型。

2. 整形在内存中的存储

我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
比如:

int a = 20;
int b = -10;

我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:

2.1 原码、反码、补码

计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
负整数的三种表示方法各不相同。

原码
直接将二进制按照正负数的形式翻译成二进制就可以。

反码
将原码的符号位不变,其他位依次按位取反就可以得到了。

补码
反码+1就得到补码。

在这里插入图片描述

正数的原、反、补码都相同。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。(这里理解为补码除符号位之外的位按位取反再加一就能得到原码,可以自己试试)
我们看看在内存中的存储:
在这里插入图片描述
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?

2.2 大小端介绍

什么大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。
但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。
对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。
小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

百度2015年系统工程师笔试题:

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)

//代码1
#include <stdio.h>
int check_sys()
{
	int i = 1;
	return (*(char *)&i);
}
int main()
{
	int ret = check_sys();
	if(ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

//代码2
int check_sys()
{
	union
	{
		int i;
		char c;
	}un;
	un.i = 1;
	return un.c;
}

方法二在c语言自学教程——自定义类型:结构体,枚举,联合中的联合体模块有解析

2.3 练习

//输出什么?
#include <stdio.h>
int main()
{
	char a= -1;
	signed char b=-1;
	unsigned char c=-1;
	printf("a=%d,b=%d,c=%d",a,b,c);
	return 0;
}

答案:a=-1,b=-1,c=255
在这里插入图片描述
整型提升时有符号数按符号位补齐位数作为补码,无符号数在前面加0补齐位数
2.

#include <stdio.h>
int main()
{
	char a = -128;
	printf("%u\n",a);
	return 0;
}

答案:4294967168
请添加图片描述

#include <stdio.h>
int main()
{
	char a = 128;
	printf("%u\n",a);
	return 0;
}

答案:4294967168
解析跟上一题差不多
4.

int i= -20;
unsigned int j = 10;
printf("%d\n", i+j);
//按照补码的形式进行运算,最后格式化成为有符号整数

答案:-10
请添加图片描述

unsigned int i;
for(i = 9; i >= 0; i--)
{
	printf("%u\n",i);
}

部分答案:
请添加图片描述
程序死循环
原因:unsigned int没有负数,原理类似于下图请添加图片描述

int main()
{
	char a[1000];
	int i;
	for(i=0; i<1000; i++)
	{
		a[i] = -1-i;
	}
	printf("%d",strlen(a));
	return 0;
}

答案:255
strlen遇0停止
请添加图片描述

#include <stdio.h>
unsigned char i = 0;
int main()
{
	for(i = 0;i<=255;i++)
	{
		printf("hello world\n");
	}
	return 0;
}

答案:死循环
解析:unsigned char的范围是0到255,停不下来

3. 浮点型在内存中的存储

常见的浮点数:

3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义

3.1 一个例子

浮点数存储的例子:

int main()
{
	int n = 9;
	float *pFloat = (float *)&n;
	printf("n的值为:%d\n",n);
	printf("*pFloat的值为:%f\n",*pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n",n);
	printf("*pFloat的值为:%f\n",*pFloat);
	return 0;
}

输出的结果是什么呢?
在这里插入图片描述
由此可见,浮点数和整型在内存中的存储规则不同

3.2 浮点数存储规则

num*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
请添加图片描述

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
在这里插入图片描述
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
在这里插入图片描述
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000

E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,关于浮点数的表示规则,就说到这里。

3.3 解释前面的题目:

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数
字M=000 0000 0000 0000 0000 1001。
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001 × 2 ^ (-126)=1.001×2^ (-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看例题的第二部分。
请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。
9.0 -> 1001.0 ->(-1)^ 01.0012^3 -> s=0, M=1.001,E=3+127=130
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,
即10000010。
所以,写成二进制形式,应该是s+E+M,即
0100 0001 0001 0000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是 1091567616 。

这期的内容很深入的介绍了数据在内存中的存储,希望大家拓展视野,学到更专业的内容



这篇关于c语言自学教程——深度剖析数据在内存中的存储的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程