OpenCV入门【C++版】
2022/2/1 1:11:57
本文主要是介绍OpenCV入门【C++版】,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
OpenCV基础入门【C++语言】
- Chapter1 读取图片/视频/摄像头
- 从文件读取图片
- 从文件读取视频
- 读摄像头
- Chapter2 基础函数
- Chapter3 调整和剪裁
- Chapter4 绘制形状和文字
- Chapter5 透视变换
- Chapter6 颜色检测
- Chapter7 形状/轮廓检测
- Chapter8 人脸检测
- Project1 虚拟画家
- Project2 文档扫描
- Project3 车牌检测
- OpenCV3.4.6安装包(含contrib):https://pan.baidu.com/s/1KBD-fAO63p0s5ANYa5XcEQ 提取码:p7j0
- resources资源:https://pan.baidu.com/s/1nkQ6iVV7IeeP4gTXvM_DyQ 提取码:ypvt
Chapter1 读取图片/视频/摄像头
从文件读取图片
模块 | 功能 |
---|---|
imgcodecs | Image file reading and writing |
imgproc | Image Procssing |
highgui | High-level GUI |
Mat cv::imread(const String &filename, int flags = IMREAD_COLOR)
从文件加载图像。函数
imread
从指定文件加载图像并返回。 如果无法读取图像(由于缺少文件、权限不正确、格式不受支持或无效),该函数将返回一个空矩阵(Mat::data==NULL
)。在彩色图像的情况下,解码图像的通道将以 B G R 顺序存储。
void cv::imshow(cosnst String &winnanme, InputArray mat)
在指定窗口中显示图像。这个函数后面应该是
cv::waitKey
函数,它显示指定毫秒的图像。否则,它不会显示图像。例如,waitKey(0)
将无限显示窗口,直到有任何按键(适用于图像显示)。waitKey(25)
将显示一帧 25 毫秒,之后显示将自动关闭。(如果你把它放在一个循环中读取视频,它会逐帧显示视频)
int cv::waitKey(int delay = 0)
等待按下的键。函数
waitKey
无限等待按键事件(当delay≤0
时)或延迟毫秒,当它为正时。由于操作系统在切换线程之间有最短时间,因此该函数不会完全等待延迟毫秒,它会至少等待延迟毫秒,具体取决于当时您计算机上正在运行的其他内容。如果在指定的时间过去之前没有按下任何键,则返回被按下键的代码或 -1。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { string path = "Resources/test.png"; Mat img = imread(path); imshow("Image", img); waitKey(0); //显示图片不会一闪而过 return 0; }
从文件读取视频
要捕获视频,需要创建一个VideoCapture对象。它的参数可以是视频文件的名称或设备索引。
OpenCV3.4.6中VideoCapture
类构造函数及成员函数
cv::VideoCapture::VideoCapture()
cv::VideoCapture::VideoCapture(const String &filename)
cv::VideoCapture::VideoCapture(const String &filename, int apiPreference)
cv::VideoCapture::VideoCapture(int index)
cv::VideoCapture::VideoCapture(int index, int apiPreference)
打开视频文件或捕获设备或 IP 视频流进行视频捕获。
virtual bool cv::VideoCapture::isOpened() const
如果视频捕获已经初始化,则返回true。如果先前对
VideoCapture
构造函数或VideoCapture::open()
的调用成功,则该方法返回 true。
virtual bool cv::VideoCapture::read(OutputArray image)
抓取、解码并返回下一个视频帧。
virtual double cv::VideoCapture::get(int proId) const
返回指定的
VideoCapture
属性。
virtual double cv::VideoCapture::set(int proId, double value)
在
VideoCapture
中设置一个属性。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { string path = "Resources/test_video.mp4"; VideoCapture cap(path); //视频捕捉对象 Mat img; while (true) { cap.read(img); imshow("Image", img); waitKey(1); } return 0; }
读摄像头
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { VideoCapture cap(0); Mat img; while (true) { cap.read(img); imshow("Image", img); waitKey(1); } return 0; }
Chapter2 基础函数
void cv::cvtColor(InputArray src, OutputArray dst, int code, int dstCn = 0)
将图像从一种颜色空间转换为另一种颜色空间。该函数将输入图像从一种颜色空间转换为另一种颜色空间。在从 RGB 颜色空间转换的情况下,应明确指定通道的顺序(RGB 或 BGR)。man请注意,OpenCV 中的默认颜色格式通常称为 RGB,但实际上是 BGR(字节反转)。因此,标准(24 位)彩色图像中的第一个字节将是 8 位蓝色分量,第二个字节将是绿色,第三个字节将是红色。 然后第四、第五和第六个字节将是第二个像素(蓝色,然后是绿色,然后是红色),依此类推。
void cv::GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, doube sigmaY = 0, int borderType = BORDER_DEFAULT)
使用高斯滤波器模糊图像。该函数将源图像与指定的高斯核进行卷积。
void cv::Canny(InputArray image, OutputArray edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false)
使用 Canny 算法在图像中查找边缘。
Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1, -1))
返回指定大小和形状的结构元素,用于形态学操作。该函数构造并返回可以进一步传递给腐蚀、扩张或形态学的结构元素。 但是您也可以自己构建任意二进制掩码并将其用作结构元素。
void cv::dilate(InputArray src, OutputArray dst, InuputArray kernel, Point anchor = Point(-1, -1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue())
使用特定的结构元素膨胀图像。
void cv::erode(InputArray src, OutputArray dst, InuputArray kernel, Point anchor = Point(-1, -1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue())
使用特定的结构元素腐蚀图像。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { string path = "resources/test.png"; Mat img = imread(path); Mat imgGray, imgBlur, imgCanny, imgDil, imgErode; cvtColor(img, imgGray, COLOR_BGR2GRAY); //灰度化 GaussianBlur(img, imgBlur, Size(3, 3), 3, 0); //高斯模糊 Canny(imgBlur, imgCanny, 25, 75); //边缘检测 Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(imgCanny, imgDil, kernel); erode(imgDil, imgErode, kernel); imshow("Image", img); imshow("ImageGray", imgGray); imshow("ImageBlur", imgBlur); imshow("ImageCanny", imgCanny); imshow("ImageDilation", imgDil); imshow("ImageErode", imgErode); waitKey(0); return 0; }
Chapter3 调整和剪裁
void cv::resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR)
调整图像的大小。函数
resize
将图像src
的大小缩小到或最大到指定的大小。请注意,不考虑初始dst
类型或大小。相反,大小和类型是从src、dsize、fx 和 fy
派生的。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { string path = "resources/test.png"; Mat img = imread(path); Mat imgResize, imgCrop; cout << img.size() << endl; resize(img, imgResize, Size(), 0.5, 0.5); Rect roi(200, 100, 300, 300); imgCrop = img(roi); imshow("Image", img); imshow("ImageResieze", imgResize); imshow("ImageCrop", imgCrop); waitKey(0); return 0; }
Chapter4 绘制形状和文字
Mat(int rows, int cols, int type, const Scalar &s)
重载的构造函数
void cv::circle(InputOutputArray img, Point center, int radius, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
函数
cv::circle
用给定的中心和半径绘制一个简单的或实心圆。
void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
void cv::rectangle(Mat &img, Rect rec, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
绘制一个简单的、粗的或填充的右上矩形。函数
cv::rectangle
绘制一个矩形轮廓或两个对角为 pt1 和 pt2 的填充矩形。
void cv::line (InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
绘制连接两点的线段。函数
line
绘制图像中 pt1 和 pt2 点之间的线段。
void cv::putText (InputOutputArray img, const String &text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false)
绘制一个文本字符串。函数
cv::putText
在图像中呈现指定的文本字符串。无法使用指定字体呈现的符号将替换为问号。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { //Blank Image Mat img(512, 512, CV_8UC3, Scalar(255, 255, 255)); circle(img, Point(256, 256), 155, Scalar(0, 69, 255), FILLED); rectangle(img, Point(130, 226), Point(382, 286), Scalar(255, 255, 255), -1); line(img, Point(130, 296), Point(382, 296), Scalar(255, 255, 255), 2); putText(img, "SJN's Workshop", Point(137, 262), FONT_HERSHEY_DUPLEX, 0.95, Scalar(0, 69, 255), 2); imshow("Image", img); waitKey(0); return 0; }
Chapter5 透视变换
Mat cv::getPerspectiveTransform (const Point2f src[], const Point2f dst[])
返回相应 4 个点对的 3x3 透视变换。
void cv::warpPerspective (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar())
对图像应用透视变换。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; float w = 250, h = 350; Mat matrix, imgWarp; int main() { string path = "Resources/cards.jpg"; Mat img = imread(path); Point2f src[4] = { {529, 142}, {771, 190}, {405, 395}, {674, 457} }; Point2f dst[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} }; matrix = getPerspectiveTransform(src, dst); warpPerspective(img, imgWarp, matrix, Point(w, h)); for (int i = 0; i < 4; i++) { circle(img, src[i], 10, Scalar(0, 0, 255), FILLED); } imshow("Image", img); imshow("ImageWarp", imgWarp); waitKey(0); return 0; }
注:文档扫描用到这种变换技术
Chapter6 颜色检测
void cv::inRange (InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
检查数组元素是否位于其他两个数组的元素之间。
void cv::namedWindow (const String &winname, int flags = WINDOW_AUTOSIZE)
创建一个窗口。函数
namedWindow
创建一个可用作图像和轨迹栏占位符的窗口。创建的窗口由它们的名称引用。如果同名的窗口已经存在,则该函数不执行任何操作。
int cv::createTrackbar (const String &trackbarname, const String &winname, int *value, int count, TrackbarCallback onChange = 0, void *userdata = 0)
创建一个
trackbar
并将其附加到指定窗口。函数createTrackbar
创建一个具有指定名称和范围的trackbar
(滑块或范围控件),分配一个变量值作为与trackbar
同步的位置,并指定回调函数onChange
为 在跟踪栏位置变化时被调用。创建的轨迹栏显示在指定的窗口winname
中。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; Mat imgHSV, mask; int hmin = 0, smin = 110, vmin = 153; int hmax = 19, smax = 240, vmax = 255; int main() { string path = "resources/lambo.png"; Mat img = imread(path); cvtColor(img, imgHSV, COLOR_BGR2HSV); namedWindow("Trackbars", (640, 200)); createTrackbar("Hue Min", "Trackbars", &hmin, 179); createTrackbar("Hue Max", "Trackbars", &hmax, 179); createTrackbar("Sat Min", "Trackbars", &smin, 255); createTrackbar("Sat Max", "Trackbars", &smax, 255); createTrackbar("Val Min", "Trackbars", &vmin, 255); createTrackbar("Val Max", "Trackbars", &vmax, 2555); while (true) { Scalar lower(hmin, smin, vmin); Scalar upper(hmax, smax, vmax); inRange(imgHSV, lower, upper, mask); imshow("Image", img); imshow("Image HSV", imgHSV); imshow("Image Mask", mask); waitKey(1); } return 0; }
Chapter7 形状/轮廓检测
void cv::findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, int method, Point offset = Point())
在二值图像中查找轮廓。从OpenCV3.2开始源图像不会这个函数被修改。
参数 | 含义 |
---|---|
image | 二值输入图像 |
contours | 检测到的轮廓,每个轮廓都存储为点向量(例如 std::vector<std::vector<cv::Point> > ) |
hierarchy | 可选的输出向量(例如std::vector<cv::Vec4i> ),包含有关图像拓扑的信息 |
mode | 轮廓检索模式 |
method | 轮廓近似方式 |
offset | 每个轮廓点移动的可选偏移量 |
double cv::contourArea(InputArray contour, bool oriented=false)
计算轮廓区域
double cv::arcLength(InputArray curve, bool closed)
计算曲线长度或闭合轮廓周长
void cv::approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
函数
cv::approxPolyDP
用另一个具有较少顶点的曲线/多边形来逼近一条曲线或多边形,以使它们之间的距离小于或等于指定的精度。
Rect cv::boundingRect(InputArray array)
计算并返回指定点集或灰度图像非零像素的最小上边界矩形。
void cv::drawContours(InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const Scalar &color, int thickness = 1, int lineType = LINE_8, InputArray hierarchy = noArray(), int maxLevel = INT_MAX, Point offset = Point())
绘制轮廓轮廓或填充轮廓。如果厚度≥0,该函数在图像中绘制轮廓轮廓,如果厚度<0,则填充轮廓所包围的区域。
Point_< _Tp > tl() const
左上角
Point_< _Tp > br() const
右下角
//rect template<typename _Tp> class cv::Rect_< _Tp > typedef Rect_<int> cv::Rect2i typedef Rect2i cv::Rect //point template<typename _Tp> class cv::Point_< _Tp > typedef Point_<int> cv::Point2i typedef Point2i cv::Point
cv::Rect_< _Tp > 类属性 | 含义 |
---|---|
height | 矩形高度 |
width | 矩形宽度 |
x | 左上角的 x 坐标 |
y | 左上角的 y 坐标 |
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; void getContours(Mat imgDil, Mat img) { vector<vector<Point>> contours; //轮廓数据 vector<Vec4i> hierarchy; findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //通过预处理的二值图像找到所有轮廓contours //drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓 for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i]); //计算每个轮廓区域 cout << area << endl; vector<vector<Point>> conPoly(contours.size()); vector<Rect> boundRect(contours.size()); string objectType; if (area > 1000) //过滤噪声 { //找轮廓的近似多边形或曲线 double peri = arcLength(contours[i], true); approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true); cout << conPoly[i].size() << endl; boundRect[i] = boundingRect(conPoly[i]); //找每个近似曲线的最小上边界矩形 int objCor = (int)conPoly[i].size(); if (objCor == 3) { objectType = "Tri"; } if (objCor == 4) { float aspRatio = (float)boundRect[i].width / boundRect[i].height; //宽高比 cout << aspRatio << endl; if (aspRatio > 0.95 && aspRatio < 1.05) { objectType = "Square"; } else { objectType = "Rect"; } } if (objCor > 4) { objectType = "CirCle"; } drawContours(img, conPoly, i, Scalar(255, 0, 255), 2); //绘制滤除噪声后的所有轮廓 rectangle(img, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 5); //绘制边界框 putText(img, objectType, { boundRect[i].x, boundRect[i].y - 5 }, FONT_HERSHEY_PLAIN, 1, Scalar(0, 69, 255), 1); } } } int main() { string path = "resources/shapes.png"; Mat img = imread(path); Mat imgGray, imgBlur, imgCanny, imgDil; // Preprocessing cvtColor(img, imgGray, COLOR_BGR2GRAY); GaussianBlur(imgGray, imgBlur, Size(3, 3), 3, 0); Canny(imgBlur, imgCanny, 25, 75); Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(imgCanny, imgDil, kernel); getContours(imgDil, img); imshow("Image", img); /*imshow("Image Gray", imgGray); imshow("Image Blur", imgBlur); imshow("Image Canny", imgCanny); imshow("Image Dil", imgDil);*/ waitKey(0); return 0; }
Chapter8 人脸检测
涉及模块objdetect:Object Detection
class cv::CascadeClassifier
用于对象检测的级联分类器类。
bool load (const String &filename)
从文件加载分类器。
bool empty() const
检查分类器是否已加载。
void detectMultiScale(InputArray image, std::vector<Rect> &objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())
检测输入图像中不同大小的对象。检测到的对象作为矩形列表返回。
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/objdetect.hpp> #include <iostream> using namespace cv; using namespace std; int main() { string path = "Resources/test.png"; Mat img = imread(path); CascadeClassifier faceCascade; faceCascade.load("Resources/haarcascade_frontalface_default.xml"); if (faceCascade.empty()) { cout << "XML file not loaded" << endl; } vector<Rect> faces; faceCascade.detectMultiScale(img, faces, 1.1, 10); for (int i = 0; i < faces.size(); i++) { rectangle(img, faces[i].tl(), faces[i].br(), Scalar(255, 0, 255), 3); } imshow("Image", img); waitKey(0); return 0; }
Project1 虚拟画家
颜色选择器:先找出待检测颜色的HSV阈值
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; int main() { VideoCapture cap(1); Mat img; Mat imgHSV, mask, imgColor; int hmin = 0, smin = 0, vmin = 0; int hmax = 179, smax = 255, vmax = 255; namedWindow("Trackbars", (640, 200)); // Create Window createTrackbar("Hue Min", "Trackbars", &hmin, 179); createTrackbar("Hue Max", "Trackbars", &hmax, 179); createTrackbar("Sat Min", "Trackbars", &smin, 255); createTrackbar("Sat Max", "Trackbars", &smax, 255); createTrackbar("Val Min", "Trackbars", &vmin, 255); createTrackbar("Val Max", "Trackbars", &vmax, 255); while (true) { cap.read(img); cvtColor(img, imgHSV, COLOR_BGR2HSV); Scalar lower(hmin, smin, vmin); Scalar upper(hmax, smax, vmax); inRange(imgHSV, lower, upper, mask); // hmin, smin, vmin, hmax, smax, vmax; cout << hmin << ", " << smin << ", " << vmin << ", " << hmax << ", " << smax << ", " << vmax << endl; imshow("Image", img); imshow("Mask", mask); waitKey(1); } }
利用检测到颜色的矩形框上边界中点开始虚拟作画
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; Mat img; vector<vector<int>> newPoints; vector<vector<int>> myColors{ {124, 48, 117, 143, 170, 255}, //purple {68, 72, 156, 102, 126, 255} }; //green vector<Scalar> myColorValues{ {255, 0, 255}, //purple {0, 255, 0} }; //green Point getContours(Mat imgDil) { vector<vector<Point>> contours; //轮廓数据 vector<Vec4i> hierarchy; findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //通过预处理的二值图像找到所有轮廓contours //drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声) vector<vector<Point>> conPoly(contours.size()); vector<Rect> boundRect(contours.size()); Point myPoint(0, 0); for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i]); //计算每个轮廓区域 cout << area << endl; if (area > 1000) //过滤噪声 { //找轮廓的近似多边形或曲线 double peri = arcLength(contours[i], true); approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true); cout << conPoly[i].size() << endl; boundRect[i] = boundingRect(conPoly[i]); //找每个近似曲线的最小上边界矩形 myPoint.x = boundRect[i].x + boundRect[i].width / 2; myPoint.y = boundRect[i].y; //drawContours(img, conPoly, i, Scalar(255, 0, 255), 2); //绘制滤除噪声后的所有轮廓 //rectangle(img, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 5); //绘制边界框 } } return myPoint; //返回矩形框上边界中点坐标 } vector<vector<int>> findColor(Mat img) { Mat imgHSV, mask; cvtColor(img, imgHSV, COLOR_BGR2HSV); for (int i = 0; i < myColors.size(); i++) { Scalar lower(myColors[i][0], myColors[i][1], myColors[i][2]); Scalar upper(myColors[i][3], myColors[i][4], myColors[i][5]); inRange(imgHSV, lower, upper, mask); //imshow(to_string(i), mask); Point myPoint = getContours(mask); //根据mask得到检测到当前颜色矩形框的上边界中点坐标 if (myPoint.x != 0 && myPoint.y != 0) { newPoints.push_back({ myPoint.x, myPoint.y, i }); //得到当前帧检测颜色的目标点 } } return newPoints; } void drawOnCanvas(vector<vector<int>> newPoints, vector<Scalar> myColorValues) { for (int i = 0; i < newPoints.size(); i++) { circle(img, Point(newPoints[i][0], newPoints[i][1]), 10, myColorValues[newPoints[i][2]], FILLED); } } int main() { VideoCapture cap(0); while (true) { cap.read(img); newPoints = findColor(img); drawOnCanvas(newPoints, myColorValues); imshow("Image", img); waitKey(1); } return 0; }
Project2 文档扫描
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; Mat imgOriginal, imgGray, imgBlur,imgCanny, imgThre, imgDil, imgErode, imgWarp, imgCrop; vector<Point> initialPoints, docPoints; float w = 420, h = 596; Mat preProcessing(Mat img) { cvtColor(img, imgGray, COLOR_BGR2GRAY); GaussianBlur(imgGray, imgBlur, Size(3, 3), 3, 0); Canny(imgBlur, imgCanny, 25, 75); Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(imgCanny, imgDil, kernel); //erode(imgDil, imgErode, kernel); return imgDil; } vector<Point> getContours(Mat imgDil) { vector<vector<Point>> contours; //轮廓数据 vector<Vec4i> hierarchy; findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //通过预处理的二值图像找到所有轮廓contours //drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声) vector<vector<Point>> conPoly(contours.size()); vector<Point> biggest; int maxArea = 0; for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i]); //计算每个轮廓区域 cout << area << endl; if (area > 1000) //过滤噪声 { //找轮廓的近似多边形或曲线 double peri = arcLength(contours[i], true); approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true); if (area > maxArea && conPoly[i].size() == 4) { //drawContours(imgOriginal, conPoly, i, Scalar(255, 0, 255), 5); //绘制滤除噪声后的所有轮廓 biggest = { conPoly[i][0], conPoly[i][1], conPoly[i][2], conPoly[i][3] }; maxArea = area; } } } return biggest; //返回最大轮廓四个点的坐标 } void drawPoints(vector<Point> points, Scalar color) { for (int i = 0; i < points.size(); i++) { circle(imgOriginal, points[i], 10, color, FILLED); putText(imgOriginal, to_string(i), points[i], FONT_HERSHEY_PLAIN, 4, color, 4); } } vector<Point> reorder(vector<Point> points) { vector<Point> newPoints; vector<int> sumPoints, subPoints; for (int i = 0; i < 4; i++) { sumPoints.push_back(points[i].x + points[i].y); subPoints.push_back(points[i].x - points[i].y); } newPoints.push_back(points[min_element(sumPoints.begin(), sumPoints.end()) - sumPoints.begin()]); //0 newPoints.push_back(points[max_element(subPoints.begin(), subPoints.end()) - subPoints.begin()]); //1 newPoints.push_back(points[min_element(subPoints.begin(), subPoints.end()) - subPoints.begin()]); //2 newPoints.push_back(points[max_element(sumPoints.begin(), sumPoints.end()) - sumPoints.begin()]); //3 return newPoints; } Mat getWarp(Mat img, vector<Point> points, float w, float h) { Point2f src[4] = { points[0], points[1], points[2], points[3] }; Point2f dst[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} }; Mat matrix = getPerspectiveTransform(src, dst); warpPerspective(img, imgWarp, matrix, Point(w, h)); return imgWarp; } int main() { string path = "Resources/paper.jpg"; imgOriginal = imread(path); //resize(imgOriginal, imgOriginal, Size(), 0.5, 0.5); //Preprocessing imgThre = preProcessing(imgOriginal); //Get Contours - Biggest initialPoints = getContours(imgThre); //drawPoints(initialPoints, Scalar(0, 0, 255)); docPoints = reorder(initialPoints); //drawPoints(docPoints, Scalar(0, 255, 0)); //Warp imgWarp = getWarp(imgOriginal, docPoints, w, h); //Crop int cropValue = 5; Rect roi(cropValue, cropValue, w - (2 * cropValue), h - (2 * cropValue)); imgCrop = imgWarp(roi); imshow("Image", imgOriginal); imshow("Image Dilation", imgThre); imshow("Image Warp", imgWarp); imshow("Image Crop", imgCrop); waitKey(0); return 0; }
Project3 车牌检测
#include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/objdetect.hpp> #include <iostream> using namespace cv; using namespace std; int main() { VideoCapture cap(0); Mat img; CascadeClassifier plateCascade; plateCascade.load("Resources/haarcascade_russian_plate_number.xml"); if (plateCascade.empty()) { cout << "XML file not loaded" << endl; } vector<Rect> plates; while (true) { cap.read(img); plateCascade.detectMultiScale(img, plates, 1.1, 10); for (int i = 0; i < plates.size(); i++) { Mat imgCrop = img(plates[i]); imshow(to_string(i), imgCrop); imwrite("D:\\VS2019Projects\\chapter2\\chapter2\\resources\\Plates\\1.png", imgCrop); rectangle(img, plates[i].tl(), plates[i].br(), Scalar(255, 0, 255), 3); } imshow("Image", img); waitKey(1); } return 0; }
这篇关于OpenCV入门【C++版】的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享