[人脸算法]技术方向综述

2022/2/25 22:37:13

本文主要是介绍[人脸算法]技术方向综述,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

01 人脸技术的应用

人脸硬件产品:考勤支付,安防监控,医疗美容
人脸软件产品:各类娱乐软件,如美图秀秀

02 人脸图像算法及其研究方向

人脸检测核心算法

目的:检测图像中是否存在人脸

人脸检测是目标检测的分支,通用的目标检测方法都可以用来做人脸检测
人脸检测的独特模型:

  1. 级联模型: 由粗到精,不断去掉假的人脸
    image

  2. 多任务模型 :同时完成人脸关键点标注和人脸检测两个任务
    image

  3. 多尺度模型:对应于目标检测中的多尺度问题,一张图片中有多种尺度的目标
    image

人脸关键点检测

目的:检测人脸中的关键点,即有语义特征的点,从早期的五个关键点到现在的72个关键点

  1. 多任务模型(同上第2点)
  2. 大姿态定位:如侧面,正面的转换,遮挡,模糊 存在大姿态遮挡时如何定位关键点
  3. 关键点跟踪,针对于视频

人脸识别

基本步骤:人脸检测,人脸对齐(前两步相当于人脸归一化),人脸识别

方法一:度量学习

计算关键点之间的距离,给CNN模型输入同一个人的两张图片,希望CNN提取出来的特征向量之间的距离较小
image

improved:tripe loss 输入三张图片,其中有两张图片属于同一个人,一张图片属于另一个人,则让同一人的两张图特征向量之间距离较小,不同人图片之间特征向量距离较大
image

方法二:分类+验证模型

先训练一个分类模型,类别数和ID数相同,再用验证模型使得同一个人脸对应的特征向量之间距离较近

研究方向:

  1. 更大,质量更高的数据集
  2. 优化目标/损失函数的改进

人脸属性分析

应用:表情识别,年龄识别,颜值识别,装饰识别,脸型识别,性格识别

算法:分类模型(得到一个类别/在众多类别中选择一个类别),回归模型(得到一个数字,预测一个人的年龄,性别等),排序模型(得到一个分布,如无法知道确切的年龄值,但可以知道年龄的分布),分割(可以为后续算法提供预处理),局部属性分析(鼻子,眼镜,嘴巴等多个部位单独分析),

编辑:表情编辑,年龄编辑,颜值编辑,装饰编辑,脸型编辑,性格编辑
算法:GAN与风格化模型,独立属性模型(比如只改变年龄),统一的属性编辑,无/有监督模型

人脸三维重建:
应用:内容创作,AI主播,医疗整容
算法:人脸模型(研究通用的人脸模型,通过标准的人脸模型去调整参数),立体视觉(同一个人脸从不同角度拍摄),SFS,SFM

人脸算法的未来研究方向

细粒度的人脸检测及分析

小脸检测(地铁上安防监控),遮挡脸检测(口罩),活体检测(检测人脸是否为真人),伪造脸检测(检测人脸是否为AI生成的),微表情识别

人脸识别重难点

三维人脸、视频人脸、跨年龄(10岁80岁同一个人)、大姿态与遮挡、异质源(RGB图像,红外光图像)、少样本

人脸编辑重难点

精确的属性编辑(仿真一个微笑的表情,精确的控制微笑的幅度),统一的属性编辑(对人脸的各个属性分布进行编辑,而不是对于人脸中的每个属性单独设计模型),可控的属性编辑(控制幅度,控制区域,通过更加便于理解的方式编辑)

人脸三维重建

人脸模型,无监督模型(数据获取较难),人脸精度与细节,人脸遮挡

参考:B站有三AI



这篇关于[人脸算法]技术方向综述的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程