四、Mysql索引优化

2022/3/2 19:19:53

本文主要是介绍四、Mysql索引优化,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一、优化方法

1、MySQL支持两种方式的排序filesort和index,Using index是指MySQL扫描索引本身完成排序。index效率高,filesort效率低。
2、order by满足两种情况会使用Using index。
1) order by语句使用索引最左前列。
2) 使用where子句与order by子句条件列组合满足索引最左前列。

3、尽量在索引列上完成排序,遵循索引建立(索引创建的顺序)时的最左前缀法则。
4、如果order by的条件不在索引列上,就会产生Using filesort。
5、能用覆盖索引尽量用覆盖索引
6、group by与order by很类似,其实质是先排序后分组,遵照索引创建顺序的最左前缀法则。对于group by的优化如果不需要排序的可以加上order by null禁止排序。注意,where高于having,能写在where中的限定条件就不要去having限定了。
7、联合索引第一个字段就用范围查找不会走索引,mysql内部可能觉得第一个字段就用范围,结果集应该很大,回表效率不高,还不如就全表扫描。这个时候可以强制走索引让联合索引第一个字段范围查找也走索引,扫描的行rows看上去也少了点,但是最终查找效率不一定比全表扫描高,因为回表效率不高
8、in和or在表数据量比较大的情况会走索引,在表记录不多的情况下会选择全表扫描
9、like KK% 一般情况都会走索引

二、Using filesort文件排序原理详解

filesort文件排序方式
单路排序:是一次性取出满足条件行的所有字段,然后在sort buffer中进行排序;用trace工具可以看到sort_mode信息里显示< sort_key, additional_fields >或者< sort_key, packed_additional_fields >
双路排序(又叫回表排序模式):是首先根据相应的条件取出相应的排序字段和可以直接定位行数据的行 ID,然后在 sort buffer 中进行排序,排序完后需要再次取回其它需要的字段;用trace工具可以看到sort_mode信息里显示< sort_key, rowid >

MySQL 通过比较系统变量 max_length_for_sort_data(默认1024字节) 的大小和需要查询的字段总大小来判断使用哪种排序模式。
如果 字段的总长度小于max_length_for_sort_data ,那么使用 单路排序模式;
如果 字段的总长度大于max_length_for_sort_data ,那么使用 双路排序模式。

单路排序的详细过程
1、从索引name找到第一个满足 name = ‘zhuge’ 条件的主键 id
2、根据主键 id 取出整行,取出所有字段的值,存入 sort_buffer 中
3、从索引name找到下一个满足 name = ‘zhuge’ 条件的主键 id
4、重复步骤 2、3 直到不满足 name = ‘zhuge’
5、对 sort_buffer 中的数据按照字段 position 进行排序
6、返回结果给客户端

双路排序的详细过程
1、从索引 name 找到第一个满足 name = ‘zhuge’ 的主键id
2、根据主键 id 取出整行,把排序字段 position 和主键 id 这两个字段放到 sort buffer 中
3、从索引 name 取下一个满足 name = ‘zhuge’ 记录的主键 id
4、重复 3、4 直到不满足 name = ‘zhuge’
5、对 sort_buffer 中的字段 position 和主键 id 按照字段 position 进行排序
6、遍历排序好的 id 和字段 position,按照 id 的值回到原表中取出 所有字段的值返回给客户端

其实对比两个排序模式,单路排序会把所有需要查询的字段都放到 sort buffer 中,而双路排序只会把主键和需要排序的字段放到 sort buffer 中进行排序,然后再通过主键回到原表查询需要的字段。
如果 MySQL 排序内存 sort_buffer 配置的比较小并且没有条件继续增加了,可以适当把 max_length_for_sort_data 配置小点,让优化器选择使用双路排序算法,可以在sort_buffer 中一次排序更多的行,只是需要再根据主键回到原表取数据。
如果 MySQL 排序内存有条件可以配置比较大,可以适当增大 max_length_for_sort_data 的值,让优化器优先选择全字段排序(单路排序),把需要的字段放到 sort_buffer 中,这样排序后就会直接从内存里返回查询结果了。
所以,MySQL通过 max_length_for_sort_data 这个参数来控制排序,在不同场景使用不同的排序模式,从而提升排序效率。

注意,如果全部使用sort_buffer内存排序一般情况下效率会高于磁盘文件排序,但不能因为这个就随便增大sort_buffer(默认1M),mysql很多参数设置都是做过优化的,不要轻易调整。

三、索引设计原则

1、代码先行,索引后上
不知大家一般是怎么给数据表建立索引的,是建完表马上就建立索引吗?
这其实是不对的,一般应该等到主体业务功能开发完毕,把涉及到该表相关sql都要拿出来分析之后再建立索引。
2、联合索引尽量覆盖条件
比如可以设计一个或者两三个联合索引(尽量少建单值索引),让每一个联合索引都尽量去包含sql语句里的where、order by、group by的字段,还要确保这些联合索引的字段顺序尽量满足sql查询的最左前缀原则。
3、不要在小基数字段上建立索引
索引基数是指这个字段在表里总共有多少个不同的值,比如一张表总共100万行记录,其中有个性别字段,其值不是男就是女,那么该字段的基数就是2。
如果对这种小基数字段建立索引的话,还不如全表扫描了,因为你的索引树里就包含男和女两种值,根本没法进行快速的二分查找,那用索引就没有太大的意义了。
一般建立索引,尽量使用那些基数比较大的字段,就是值比较多的字段,那么才能发挥出B+树快速二分查找的优势来。
4、长字符串我们可以采用前缀索引
尽量对字段类型较小的列设计索引,比如说什么tinyint之类的,因为字段类型较小的话,占用磁盘空间也会比较小,此时你在搜索的时候性能也会比较好一点。
当然,这个所谓的字段类型小一点的列,也不是绝对的,很多时候你就是要针对varchar(255)这种字段建立索引,哪怕多占用一些磁盘空间也是有必要的。
对于这种varchar(255)的大字段可能会比较占用磁盘空间,可以稍微优化下,比如针对这个字段的前20个字符建立索引,就是说,对这个字段里的每个值的前20个字符放在索引树里,类似于 KEY index(name(20),age,position)。
此时你在where条件里搜索的时候,如果是根据name字段来搜索,那么此时就会先到索引树里根据name字段的前20个字符去搜索,定位到之后前20个字符的前缀匹配的部分数据之后,再回到聚簇索引提取出来完整的name字段值进行比对。
但是假如你要是order by name,那么此时你的name因为在索引树里仅仅包含了前20个字符,所以这个排序是没法用上索引的, group by也是同理。所以这里大家要对前缀索引有一个了解。
5、where与order by冲突时优先where
在where和order by出现索引设计冲突时,到底是针对where去设计索引,还是针对order by设计索引?到底是让where去用上索引,还是让order by用上索引?
一般这种时候往往都是让where条件去使用索引来快速筛选出来一部分指定的数据,接着再进行排序。
因为大多数情况基于索引进行where筛选往往可以最快速度筛选出你要的少部分数据,然后做排序的成本可能会小很多。
6、基于慢sql查询做优化
可以根据监控后台的一些慢sql,针对这些慢sql查询做特定的索引优化。
关于慢sql查询可以参考这篇文章:https://blog.csdn.net/qq_40884473/article/details/89455740

四、Order by与Group by优化

建立索引 name、age、position

栗子1:
在这里插入图片描述
分析:
利用最左前缀法则:中间字段不能断,因此查询用到了name索引,从key_len=74也能看出,age索引列用在排序过程中,因为Extra字段里没有using filesort

栗子2:
在这里插入图片描述
分析:
从explain的执行结果来看:key_len=74,查询使用了name索引,由于用了position进行排序,跳过了age,出现了Using filesort

栗子3:
在这里插入图片描述
分析:
查找只用到索引name,age和position用于排序,无Using filesort。

栗子4:
在这里插入图片描述
分析:
和Case 3中explain的执行结果一样,但是出现了Using filesort,因为索引的创建顺序为name,age,position,但是排序的时候age和position颠倒位置了

栗子5:
在这里插入图片描述
分析:
与Case 4对比,在Extra中并未出现Using filesort,因为age为常量,在排序中被优化,所以索引未颠倒,不会出现Using filesort

栗子6:
在这里插入图片描述
在这里插入图片描述

分析:
虽然排序的字段列与索引顺序一样,且order by默认升序,这里position desc变成了降序,导致与索引的排序方式不同,从而产生Using filesort。Mysql8以上版本有降序索引可以支持该种查询方式

栗子7:
在这里插入图片描述
在这里插入图片描述

分析:
对于排序来说,多个相等条件也是范围查询

栗子8:
在这里插入图片描述
可以用覆盖索引优化
在这里插入图片描述

五、分页查询优化

很多时候我们业务系统实现分页功能可能会用到类似如下sql实现:

select * from employees limit 10000,10;

表示从表 employees 中取出从 10001 行开始的 10 行记录。看似只查询了 10 条记录,实际这条 SQL 是先读取 10010 条记录,然后抛弃前 10000 条记录,然后读到后面 10 条想要的数据。因此要查询一张大表比较靠后的数据,执行效率是非常低的。

那么,分页场景有哪些优化技巧呢?

1、根据自增且连续的主键排序的分页查询

select * from employees limit 90000,5;

该 SQL 表示查询从第 90001开始的五行数据,没添加单独 order by,表示通过主键排序。我们再看表 employees ,因为主键是自增并且连续的,所以可以改写成按照主键去查询从第 90001开始的五行数据。如下:

select * from employees where id > 90000 limit 5;

查询的结果是一致的。对比执行计划会发现改写后的 SQL 走了索引,而且扫描的行数大大减少,执行效率更高。但是,这条改写的SQL 在很多场景并不实用,因为表中可能某些记录被删后,主键空缺,导致结果不一致。因此,如果主键不连续,不能使用上面描述的优化方法。另外如果原 SQL 是 order by 非主键的字段,按照上面说的方法改写会导致两条 SQL 的结果不一致。所以这种改写得满足以下两个条件:

  1. 主键自增且连续
  2. 结果是按照主键排序的

2、根据非主键字段排序的分页查询

看一个根据非主键字段排序的分页查询:

select * from employees ORDER BY name limit 90000,5;

在这里插入图片描述
通过执行计划会发现并没有使用 name 字段的索引。那是因为扫描整个索引并查找到没索引的行(可能要遍历多个索引树)的成本比扫描全表的成本更高,所以优化器放弃使用索引。知道了原因,怎么优化呢?其实关键是让排序时返回的字段尽可能少,所以可以让排序和分页操作先查出主键,然后根据主键查到对应的记录,SQL改写如下:

select * from employees e inner join (select id from employees order by name limit 90000,5) ed on e.id = ed.id;

再对比执行计划:
在这里插入图片描述
优化后的结果与原 SQL 一致,执行时间减少了一半以上。原 SQL 使用的是 filesort 排序,而优化后的 SQL 使用的是索引排序。

六、Join关联查询优化

mysql的表关联常见有两种算法:

1、 嵌套循环连接 Nested-Loop Join(NLJ) 算法:一次一行循环地从第一张表(称为驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动表)里取出满足条件的行,然后取出两张表的结果合集。

创建两张t1、t2表,并向t1表中写入10000条数据,t2表中写入100条数据

EXPLAIN select * from t1 inner join t2 on t1.a= t2.a;

在这里插入图片描述
从执行计划中可以看到这些信息:

  1. 驱动表是 t2,被驱动表是 t1。先执行的就是驱动表(执行计划结果的id如果一样则按从上到下顺序执行sql);优化器一般会优先选择小表做驱动表,用where条件过滤完驱动表,然后再跟被驱动表做关联查询。所以使用 inner join 时,排在前面的表并不一定就是驱动表。
  2. 当使用left join时,左表是驱动表,右表是被驱动表,当使用right join时,右表时驱动表,左表是被驱动表,当使用join时,mysql会选择数据量比较小的表作为驱动表,大表作为被驱动表。
  3. 使用了 NLJ算法。一般 join 语句中,如果执行计划 Extra 中未出现 Using join buffer 则表示使用的 join 算法是 NLJ。

上面sql的大致流程如下:

  1. 从表 t2 中读取一行数据(如果t2表有查询过滤条件的,用先用条件过滤完,再从过滤结果里取出一行数据);
  2. 从第 1 步的数据中,取出关联字段 a,到表 t1 中查找;
  3. 取出表 t1 中满足条件的行,跟 t2 中获取到的结果合并,作为结果返回给客户端;
  4. 重复上面 3 步。

整个过程会读取 t2 表的所有数据(扫描100行),然后遍历这每行数据中字段 a 的值,根据 t2 表中 a 的值索引扫描 t1 表中的对应行(扫描100次 t1 表的索引,1次扫描可以认为最终只扫描 t1 表一行完整数据,也就是总共 t1 表也扫描了100行)。因此整个过程扫描了 200 行。
如果被驱动表的关联字段没索引,使用NLJ算法性能会比较低,mysql会选择Block Nested-Loop Join算法。

2、 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法:把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比。

EXPLAIN select * from t1 inner join t2 on t1.b= t2.b;

在这里插入图片描述
Extra 中 的Using join buffer (Block Nested Loop)说明该关联查询使用的是 BNL 算法。

上面sql的大致流程如下:

  1. 把 t2 的所有数据放入到 join_buffer 中
  2. 把表 t1 中每一行取出来,跟 join_buffer 中的数据做对比
  3. 返回满足 join 条件的数据

整个过程对表 t1 和 t2 都做了一次全表扫描,因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的数据总量) = 10100。并且 join_buffer 里的数据是无序的,因此对表 t1 中的每一行,都要做 100 次判断,所以内存中的判断次数是 100 * 10000= 100 万次。

这个栗子里表 t2 才 100 行,要是表 t2 是一个大表,join_buffer 放不下怎么办呢?·
join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t2 的所有数据话,策略很简单,就是分段放。比如 t2 表有1000行记录, join_buffer 一次只能放800行数据,那么执行过程就是先往 join_buffer 里放800行记录,然后从 t1 表里取数据跟 join_buffer 中数据对比得到部分结果,然后清空 join_buffer ,再放入 t2 表剩余200行记录,再次从 t1 表里取数据跟 join_buffer 中数据对比。所以就多扫了一次 t1 表。

被驱动表的关联字段没索引为什么要选择使用 BNL 算法而不使用 Nested-Loop Join 呢?
如果上面第二条sql使用 Nested-Loop Join,那么扫描行数为 100 * 10000 = 100万次,这个是磁盘扫描。很显然,用BNL磁盘扫描次数少很多,相比于磁盘扫描,BNL的内存计算会快得多。因此MySQL对于被驱动表的关联字段没索引的关联查询,一般都会使用 BNL 算法。如果有索引一般选择 NLJ 算法,有索引的情况下 NLJ 算法比 BNL算法性能更高。

对于关联sql的优化:

  • 关联字段加索引,让mysql做join操作时尽量选择NLJ算法,驱动表因为需要全部查询出来,所以过滤的条件也尽量要走索引,避免全表扫描,总之,能走索引的过滤条件尽量都走索引
  • 小表驱动大表,写多表连接sql时如果明确知道哪张表是小表可以用straight_join写法固定连接驱动方式,省去mysql优化器自己判断的时间

straight_join:straight_join功能同join类似,但能让左边的表来驱动右边的表,能改表优化器对于联表查询的执行顺序。比如:select * from t2 straight_join t1 on t2.a = t1.a; 代表指定mysql选着 t2 表作为驱动表。
straight_join只适用于inner join,并不适用于left join,right join。(因为left join,right join已经代表指定了表的执行顺序)
尽可能让优化器去判断,因为大部分情况下mysql优化器是比人要聪明的。使用straight_join一定要慎重,因为部分情况下人为指定的执行顺序并不一定会比优化引擎要靠谱。

在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。

in和exsits优化:

原则:小表驱动大表,即小的数据集驱动大的数据集
in:当B表的数据集小于A表的数据集时,in优于exists

select * from A where id in (select id from B)  
#等价于:
  for(select id from B){
      select * from A where A.id = B.id
    }

exists:当A表的数据集小于B表的数据集时,exists优于in
   将主查询A的数据,放到子查询B中做条件验证,根据验证结果(true或false)来决定主查询的数据是否保留

select * from A where exists (select 1 from B where B.id = A.id)
#等价于:
    for(select * from A){
      select * from B where B.id = A.id
    }
    
#A表与B表的ID字段应建立索引
  1. EXISTS (subquery)只返回TRUE或FALSE,因此子查询中的SELECT * 也可以用SELECT 1 替换,官方说法是实际执行时会忽略SELECT清单,因此没有区别
  2. EXISTS子查询的实际执行过程可能经过了优化而不是我们理解上的逐条对比
  3. EXISTS子查询往往也可以用JOIN来代替,何种最优需要具体问题具体分析

七、count( )查询优化

mysql> EXPLAIN select count(1) from employees;
mysql> EXPLAIN select count(id) from employees;
mysql> EXPLAIN select count(name) from employees;
mysql> EXPLAIN select count(*) from employees;

# 注:以上4条sql只有根据某个字段count不会统计字段为null值的数据行

实际上,四个sql的执行计划是一样的,说明这四个sql执行效率应该差不多在这里插入图片描述
字段有索引:count(*)≈count(1)>count(字段)>count(主键 id) //字段有索引,count(字段)统计走二级索引,二级索引存储数据比主键索引少,所以count(字段)>count(主键 id)

字段无索引:count(*)≈count(1)>count(主键 id)>count(字段) //字段没有索引count(字段)统计走不了索引,count(主键 id)还可以走主键索引,所以count(主键 id)>count(字段)

count(1)跟count(字段)执行过程类似,不过count(1)不需要取出字段统计,就用常量1做统计,count(字段)还需要取出字段,所以理论上count(1)比count(字段)会快一点。
count() 是例外,mysql并不会把全部字段取出来,而是专门做了优化,不取值,按行累加,效率很高,所以不需要用count(列名)或count(常量)来替代 count()。
为什么对于count(id),mysql最终选择辅助索引而不是主键聚集索引?因为二级索引相对主键索引存储数据更少,检索性能应该更高,mysql内部做了点优化(应该是在5.7版本才优化)。

常见优化方法

1、查询mysql自己维护的总行数
对于myisam存储引擎的表做不带where条件的count查询性能是很高的,因为myisam存储引擎的表的总行数会被mysql存储在磁盘上,查询不需要计算
在这里插入图片描述
对于innodb存储引擎的表mysql不会存储表的总记录行数(因为有MVCC机制),查询count需要实时计算

2、show table status

如果只需要知道表总行数的估计值可以用如下sql查询,性能很高
在这里插入图片描述
3、将总数维护到Redis里

插入或删除表数据行的时候同时维护redis里的表总行数key的计数值(用incr或decr命令),但是这种方式可能不准,很难保证表操作和redis操作的事务一致性

4、增加数据库计数表

插入或删除表数据行的时候同时维护计数表,让他们在同一个事务里操作

八、数据类型优化

在MySQL中,选择正确的数据类型,对于性能至关重要。一般应该遵循下面两步:
(1)确定合适的大类型:数字、字符串、时间、二进制;
(2)确定具体的类型:有无符号、取值范围、变长定长等。

在MySQL数据类型设置方面,尽量用更小的数据类型,因为它们通常有更好的性能,花费更少的硬件资源。并且,尽量把字段定义为NOT NULL,避免使用NULL。

1、数值类型

类型大小范围(有符号)范围(无符号)用途
TINYINT1 字节(-128, 127)(0, 255)小整数值
SMALLINT2 字节(-32 768, 32 767)(0, 65 535)大整数值
MEDIUMINT3 字节(-8 388 608, 8 388 607)(0, 16 777 215)大整数值
INT或INTEGER4 字节(-2 147 483 648, 2 147 483 647)(0, 4 294 967 295)大整数值
BIGINT8 字节(-9 233 372 036 854 775 808, 9 223 372 036 854 775 807)(0, 18 446 744 073 709 551 615)极大整数值
FLOAT4 字节(-3.402 823 466 E+38, 1.175 494 351 E-38),0,(1.175 494 351 E-38,3.402 823 466 351 E+38)0, (1.175 494 351 E-38, 3.402 823 466 E+38)单精度浮点数值
DOUBLE8 字节(1.797 693 134 862 315 7 E+308, 2.225 073 858 507 201 4 E-308), 0, (2.225 073 858 507 201 4 E-308, 1.797 693 134 862 315 7 E+308)0, (2.225 073 858 507 201 4 E-308, 1.797 693 134 862 315 7 E+308)双精度浮点数值
DECIMAL对DECIMAL(M,D) ,如果M>D,为M+2否则为D+2依赖于M和D的值依赖于M和D的值小数值

优化建议

  1. 如果整形数据没有负数,如ID号,建议指定为UNSIGNED无符号类型,容量可以扩大一倍。
  2. 建议使用TINYINT代替ENUM、BITENUM、SET。
  3. 避免使用整数的显示宽度(参看文档最后),也就是说,不要用INT(10)类似的方法指定字段显示宽度,直接用INT。
  4. DECIMAL最适合保存准确度要求高,而且用于计算的数据,比如价格。但是在使用DECIMAL类型的时候,注意长度设置。
  5. 建议使用整形类型来运算和存储实数,方法是,实数乘以相应的倍数后再操作。
  6. 整数通常是最佳的数据类型,因为它速度快,并且能使用AUTO_INCREMENT。

2、日期和时间

类型大小(字节)范围格式用途
DATE31000-01-01 到 9999-12-31YYYY-MM-DD日期值
TIME3‘-838:59:59’ 到 ‘838:59:59’HH:MM:SS时间值或持续时间
YEAR11901 到 2155YYYY年份值
DATETIME81000-01-01 00:00:00 到 9999-12-31 23:59:59YYYY-MM-DD HH:MM:SS混合日期和时间值
TIMESTAMP41970-01-01 00:00:00 到 2038-01-19 03:14:07YYYYMMDDhhmmss混合日期和时间值,时间戳

优化建议

  1. MySQL能存储的最小时间粒度为秒。
  2. 建议用DATE数据类型来保存日期。MySQL中默认的日期格式是yyyy-mm-dd。
  3. 用MySQL的内建类型DATE、TIME、DATETIME来存储时间,而不是使用字符串。
  4. 当数据格式为TIMESTAMP和DATETIME时,可以用CURRENT_TIMESTAMP作为默认(MySQL5.6以后),MySQL会自动返回记录插入的确切时间。
  5. TIMESTAMP是UTC时间戳,与时区相关。
  6. DATETIME的存储格式是一个YYYYMMDD HH:MM:SS的整数,与时区无关,你存了什么,读出来就是什么。
  7. 除非有特殊需求,一般的公司建议使用TIMESTAMP,它比DATETIME更节约空间,但是像阿里这样的公司一般会用DATETIME,因为不用考虑TIMESTAMP将来的时间上限问题。
  8. 有时人们把Unix的时间戳保存为整数值,但是这通常没有任何好处,这种格式处理起来不太方便,我们并不推荐它。

3、字符串

类型大小用途
CHAR0-255字节定长字符串,char(n)当插入的字符数不足n时(n代表字符数),插入空格进行补充保存。在进行检索时,尾部的空格会被去掉。
VARCHAR0-65535 字节变长字符串,varchar(n)中的n代表最大字符数,插入的字符数不足n时不会补充空格
TINYBLOB0-255字节不超过 255 个字符的二进制字符串
TINYTEXT0-255字节短文本字符串
BLOB0-65 535字节二进制形式的长文本数据
TEXT0-65 535字节长文本数据
MEDIUMBLOB0-16 777 215字节二进制形式的中等长度文本数据
MEDIUMTEXT0-16 777 215字节中等长度文本数据
LONGBLOB0-4 294 967 295字节二进制形式的极大文本数据
LONGTEXT0-4 294 967 295字节极大文本数据

优化建议

  1. 字符串的长度相差较大用VARCHAR;字符串短,且所有值都接近一个长度用CHAR。
  2. CHAR和VARCHAR适用于包括人名、邮政编码、电话号码和不超过255个字符长度的任意字母数字组合。那些要用来计算的数字不要用VARCHAR类型保存,因为可能会导致一些与计算相关的问题。换句话说,可能影响到计算的准确性和完整性。
  3. 尽量少用BLOB和TEXT,如果实在要用可以考虑将BLOB和TEXT字段单独存一张表,用id关联。
  4. BLOB系列存储二进制字符串,与字符集无关。TEXT系列存储非二进制字符串,与字符集相关。
  5. BLOB和TEXT都不能有默认值。


这篇关于四、Mysql索引优化的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程