【SlowFast复现】Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测

2022/3/22 7:32:13

本文主要是介绍【SlowFast复现】Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测

  • 环境简介
  • 1. 开始配置
  • 2.配置demo环境
  • 3. 测试结果

环境简介

pycharm
python=3.7.11

我就是不用linux,就要用window10配置。
你还需要安装git,下下来以后一直下一步即可。
可能还需要Visual Studio。

1. 开始配置

首先下载官网的代码库

git clone https://github.com/facebookresearch/slowfast
cd SlowFast

然后新建一个虚拟环境。

在这里插入图片描述

然后自己安装 pytorch 和 torchvision 对应cuda的GPU版本。

接下来就按我给的安装提示一步一步的安装。

# 要双引号!!!!!!!
pip install 'git+https://github.com/facebookresearch/fvcore'  
pip install 'git+https://github.com/facebookresearch/fairscale' 
pip install simplejson
pip install -U iopath
pip install psutil,tensorboard,opencv-python,moviepy,moviepy,pytorchvideo
pip install pillow,pyyaml,pandas,matplotlib,sklearn

其中Detection2的安装可以按这个:

git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

在这里插入图片描述
千万要有耐心,一步一步走。

接下来就是就是编译:

python setup.py build develop

如果没报错的话就代表没有错误,如果报错了就代表有错误(听君一席话,,,),即使评论错误提示。

2.配置demo环境

终于到了测试自己视频的环节。
在主目录下/demo/AVA下新建ava.json,复制下面的标签到里面。

在这里插入图片描述
ava.json

{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}

然后下载官网权重文件

在这里插入图片描述

打开/demo/AVA/SLOWFAST_32x2_R101_50_50.yaml将我的配置信息粘贴进去

TRAIN:
  ENABLE: False
  DATASET: ava
  BATCH_SIZE: 16
  EVAL_PERIOD: 1
  CHECKPOINT_PERIOD: 1
  AUTO_RESUME: True
  # 刚刚下载的官方权重文件的路径
  CHECKPOINT_FILE_PATH: 'D:/python/video_classify/SlowFast-main/weights/SLOWFAST_32x2_R101_50_50.pkl'  #path to pretrain model
  CHECKPOINT_TYPE: pytorch
DATA:
  NUM_FRAMES: 32
  SAMPLING_RATE: 2
  TRAIN_JITTER_SCALES: [256, 320]
  TRAIN_CROP_SIZE: 224
  TEST_CROP_SIZE: 256
  INPUT_CHANNEL_NUM: [3, 3]
DETECTION:
  ENABLE: True
  ALIGNED: False
AVA:
  BGR: False
  DETECTION_SCORE_THRESH: 0.8
  TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"]
SLOWFAST:
  ALPHA: 4
  BETA_INV: 8
  FUSION_CONV_CHANNEL_RATIO: 2
  FUSION_KERNEL_SZ: 5
RESNET:
  ZERO_INIT_FINAL_BN: True
  WIDTH_PER_GROUP: 64
  NUM_GROUPS: 1
  DEPTH: 101
  TRANS_FUNC: bottleneck_transform
  STRIDE_1X1: False
  NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]]
  SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]]
  SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]]
NONLOCAL:
  LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]]
  GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]]
  INSTANTIATION: dot_product
  POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]]
BN:
  USE_PRECISE_STATS: False
  NUM_BATCHES_PRECISE: 200
SOLVER:
  MOMENTUM: 0.9
  WEIGHT_DECAY: 1e-7
  OPTIMIZING_METHOD: sgd
MODEL:
  NUM_CLASSES: 80
  ARCH: slowfast
  MODEL_NAME: SlowFast
  LOSS_FUNC: bce
  DROPOUT_RATE: 0.5
  HEAD_ACT: sigmoid
TEST:
  ENABLE: False
  DATASET: ava
  BATCH_SIZE: 8
DATA_LOADER:
  NUM_WORKERS: 2
  PIN_MEMORY: True

NUM_GPUS: 1
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
#TENSORBOARD:
#  MODEL_VIS:
#    TOPK: 2
DEMO:
  ENABLE: True
  LABEL_FILE_PATH: "./demo/AVA/ava.json" #刚刚生成的label文件
  INPUT_VIDEO: "./input/1.mp4"			#视频输入路径
  OUTPUT_FILE: "./output/1.mp4"			#视频输出路径

  DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
  DETECTRON2_WEIGHTS: detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl

注意修改,权重文件的路径,label文件的路径,输入视频的路径以及输出视频的路径

3. 测试结果

在这里插入图片描述
这样就代表demo运行成功。

结果展示

<iframe allowfullscreen="true" data-mediaembed="bilibili" id="t5gaYF6j-1647836515681" src="https://player.bilibili.com/player.html?aid=297441981"></iframe>

Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测

看起来是不是很简单呢。

有什么问题,及时评论留言。



这篇关于【SlowFast复现】Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程