一阶线性非齐次常微分方程结果中 ln函数 不加绝对值和定积分常数省略的问题
2022/3/26 23:24:45
本文主要是介绍一阶线性非齐次常微分方程结果中 ln函数 不加绝对值和定积分常数省略的问题,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一.事件起因
二.尝试解决
说是绝对值,但其实问题的核心还是在于为何代入公式计算的时候完全略去了定积分得到的常数C(绝对值可以被一个任意常数C作为系数抵消)
对于一直以来怠惰而且不求甚解的我来说,这也是个不能忽视的问题,经过自己冥思苦想无果后,我重新审视了常熟变易法证明该公式的过程
证明过程(2.29)中我们可以看到\(c(x)\)就是(2.3)解方程后得到的任意常数c,所以\(e^{\int{P(x)dx}}\)的定积分所解出来的常数C已经包括在c(x)内
所以对于\(e^{\int{P(x)dx}}\)的解不再需要一个额外的常数
而公式末尾的\(\widehat{c}\)则来源于对\(\frac{dc(x)}{dx} = Q(x)e^{-\int{P(x)dx}}\)左右两侧的积分
而由于c(x)涵盖了\(e^{\int{P(x)dx}}\)的常数,所以\(widehat{c}\)也体现了\(e^{\int{P(x)dx}}\)的常数
这篇关于一阶线性非齐次常微分方程结果中 ln函数 不加绝对值和定积分常数省略的问题的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南