卷积神经网络
2022/3/31 23:19:49
本文主要是介绍卷积神经网络,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
卷积神经网络 https://blog.csdn.net/stdcoutzyx/article/details/41596663 (忽略其中标注的小错误,多卷积核中的4个通道不是原始图片的红黄绿三通道,而是前面经过卷积后形成的4通道)
如何理解权值共享 https://www.zhihu.com/question/47158818 (可以权值共享是因为片的底层特征是与特征在图片中的位置无关的)
如何理解卷积核 http://www.360doc.com/content/21/0703/22/277688_984999494.shtml (一个卷积核相当于一个过滤器,就是一个特征提取器,为了能提取多个特征,一个网络有多个卷积核,卷积核可人为定义来提取垂直轮廓或水平轮廓,但神经网络是通过训练得到的卷积核)
( 该图的解释见 https://www.cnblogs.com/alexcai/p/5506806.html)
此图中s2是经过单通道图经过6个卷积核形成的6幅特征图,在池化形成的6通道图,之所以经过c3的 16卷积核后还是16个特征图,而不是6*16个特征图,是因c3的16个卷积核,每个卷积核将s2的6幅图分别卷积后得到的结果相加,再取激活值得到16幅图中的其中一幅图上的一个像素点.
该网络的pytorch实现见 https://blog.csdn.net/weixin_41070748/article/details/89890330?spm=1001.2014.3001.5502
Relu函数的作用 https://www.cnblogs.com/jimore/p/15901182.html
这篇关于卷积神经网络的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-22程序员出海做 AI 工具:如何用 similarweb 找到最佳流量渠道?
- 2024-12-20自建AI入门:生成模型介绍——GAN和VAE浅析
- 2024-12-20游戏引擎的进化史——从手工编码到超真实画面和人工智能
- 2024-12-20利用大型语言模型构建文本中的知识图谱:从文本到结构化数据的转换指南
- 2024-12-20揭秘百年人工智能:从深度学习到可解释AI
- 2024-12-20复杂RAG(检索增强生成)的入门介绍
- 2024-12-20基于大型语言模型的积木堆叠任务研究
- 2024-12-20从原型到生产:提升大型语言模型准确性的实战经验
- 2024-12-20啥是大模型1
- 2024-12-20英特尔的 Lunar Lake 计划:一场未竟的承诺