Microprocessor chronology(微处理器年代表)
2022/4/12 6:15:09
本文主要是介绍Microprocessor chronology(微处理器年代表),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
今天看到一则消息是,台湾的台积电,100位工程师集体跳槽到中国泉芯集成电路制造和武汉弘芯半导体,未来是芯片的时代.
Microprocessor 年代表
1970s(十九世纪七十年代)
The first microprocessors were designed and manufactured in the 1970s.
第一个微处理器被设计和生产是在二十世纪七十年代.
Designers predominantly used MOSFET transistors with pMOS logic in the early 1970s,
20世纪70年代早期,设计师主要使用带有pMOS逻辑的MOSFET晶体管
and then predominantly used NMOS logic from the mid-1970s.
然后主要使用20世纪70年代中期的NMOS逻辑。
They also experimented with various word lengths. Early on, 4-bit processors were common (e.g. Intel 4004).
他们还试验了不同的字长。早期,4位处理器很常见(例如英特尔4004)。
Later in the decade, 8-bit processors such as the MOS 6502 superseded the 4-bit chips.
在这十年(1970-1980)的后期,8位处理器(如MOS 6502芯片)取代了4位芯片.
注:MOS 6502是1975年由MOS科技所研制的8位微处理器(CPU),说明4位的cpu已过时
16-bit processors emerged by the decade's end. Some unusual word lengths were tried, including 12-bit and 20-bit.
16位处理器在本世纪末出现。尝试了一些不寻常的字长,包括12位和20位。
英特尔4004被广泛认为是世界第一款商用微处理器
Date | Name | Developer | data-sort-type="number" | Max clock (first version) |
data-sort-type="number" | Word size (bits) |
data-sort-type="number" | Process | data-sort-type="number" | Chips[1] | data-sort-type="number" | Transistors | MOSFET | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1971 | 4004 | Intel | 740 kHz | 4 | 10 μm | 1 | 2,250 | pMOS | ||||||
1972 | PPS-25 | Fairchild | 400 kHz | 4 | 2 | pMOS | ||||||||
1972 | μPD700 | NEC | 4 | 1 | [2] | |||||||||
1972 | 8008 | Intel | 500 kHz | 8 | 10 μm | 1 | 3,500 | pMOS | ||||||
1972 | PPS-4 | Rockwell | 200 kHz | 4 | 1 | pMOS | [3] | |||||||
1973 | μCOM-4 | NEC | 2 MHz | 4 | 7.5 μm | 1 | 2,500 | NMOS | [4] [5] | |||||
1973 | TLCS-12 | Toshiba | 1 MHz | 12 | 6 μm | 1 | 2,800 silicon gates | pMOS | [6] | |||||
1973 | Mini-D | Burroughs | 1 MHz | 8 | 1 | pMOS | ||||||||
1974 | IMP-8 | National | 715 kHz | 8 | 3 | pMOS | ||||||||
1974 | 8080 | Intel | 2 MHz | 8 | 6 μm | 1 | 6,000 | NMOS | ||||||
1974 | μCOM-8 | NEC | 2 MHz | 8 | 1 | NMOS | ||||||||
1974 | 5065 | Mostek | 1.4 MHz | 8 | 1 | pMOS | ||||||||
1974 | μCOM-16 | NEC | 2 MHz | 16 | 2 | NMOS | ||||||||
1974 | IMP-4 | National | 500 kHz | 4 | 3 | pMOS | ||||||||
1974 | 4040 | Intel | 740 kHz | 4 | 10 μm | 1 | 3,000 | pMOS | ||||||
1974 | 6800 | Motorola | 1 MHz | 8 | - | 1 | 4,100 | NMOS | ||||||
1974 | TMS 1000 | Texas Instruments | 400 kHz | 4 | 8 μm | 1 | 8,000 | |||||||
1974 | PACE | National | 16 | 1 | pMOS | [7] | ||||||||
1974 | ISP-8A/500 (SC/MP) | National | 1 MHz | 8 | 1 | pMOS | ||||||||
1975 | 6100 | Intersil | 4 MHz | 12 | - | 1 | 4,000 | CMOS | [8] [9] | |||||
1975 | TLCS-12A | Toshiba | 1.2 MHz | 12 | - | 1 | pMOS | |||||||
1975 | 2650 | Signetics | 1.2 MHz | 8 | 1 | NMOS | ||||||||
1975 | PPS-8 | Rockwell | 256 kHz | 8 | 1 | pMOS | ||||||||
1975 | F-8 | Fairchild | 2 MHz | 8 | 1 | NMOS | ||||||||
1975 | CDP 1801 | RCA | 2 MHz | 8 | 5 μm | 2 | 5,000 | CMOS | [10] [11] | |||||
1975 | 6502 | MOS Technology | 1 MHz | 8 | - | 1 | 3,510 | NMOS (dynamic) | ||||||
1975 | IMP-16 | National | 715 kHz | 16 | 5 | pMOS | [12] | |||||||
1975 | PFL-16A (MN 1610) | Panafacom | 2 MHz | 16 | - | 1 | NMOS | |||||||
1975 | BPC | Hewlett Packard | 10 MHz | 16 | - | 1 | 6,000 (+ ROM) | NMOS | [13] [14] | |||||
1975 | MCP-1600 | Western Digital | 3.3 MHz | 16 | - | 3 | NMOS | |||||||
1975 | CP1600 | General Instrument | 3.3 MHz | 16 | 1 | NMOS | [15] [16] [17] | |||||||
1976 | CDP 1802 | RCA | 6.4 MHz | 8 | 1 | CMOS | [18] [19] | |||||||
1976 | Z-80 | Zilog | 2.5 MHz | 8 | 4 μm | 1 | 8,500 | NMOS | ||||||
1976 | TMS9900 | Texas Instruments | 3.3 MHz | 16 | - | 1 | 8,000 | |||||||
1976 | 8x300 | Signetics | 8 MHz | 8 | 1 | Bipolar | [20] [21] | |||||||
1977 | Bellmac-8 (WE212) | Bell Labs | 2.0 MHz | 8 | 5 μm | 1 | 7,000 | CMOS | ||||||
1977 | 8085 | Intel | 3.0 MHz | 8 | 3 μm | 1 | 6,500 | |||||||
1977 | MC14500B | Motorola | 1.0 MHz | 1 | 1 | CMOS | ||||||||
1978 | 6809 | Motorola | 1 MHz | 8 | 5 μm | 1 | 9,000 | |||||||
1978 | 8086 | Intel | 5 MHz | 16 | 3 μm | 1 | 29,000 | |||||||
1978 | 6801 | Motorola | - | 8 | 5 μm | 1 | 35,000 | |||||||
1979 | Z8000 | Zilog | - | 16 | - | 1 | 17,500 | |||||||
1979 | 8088 | Intel | 5 MHz | 8/16 | 3 μm | 1 | 29,000 | NMOS (HMOS) | ||||||
1979 | 68000 | Motorola | 8 MHz | 16/32 | 3.5 μm | 1 | 68,000 | NMOS (HMOS) | [22] |
1980s
In the 1980s, 16-bit and 32-bit microprocessors were common among new designs, and CMOS technology overtook NMOS. Transistor count increased dramatically during the decade.
20世纪80年代,16位和32位微处理器在新设计中很常见,CMOS技术超过了NMOS。晶体管数量在这十年里急剧增加。
Key home computers which remained popular for much of the 1980s predominantly use processors developed in the 1970s. Versions of the MOS Technology 6502, first released in 1975, power the Commodore 64, Apple IIe, BBC Micro, and Atari 8-bit family. The Zilog Z80 (1976) is at the core of the ZX Spectrum.
在20世纪80年代的大部分时间里,主要家用电脑仍然很受欢迎,主要使用70年代开发的处理器。1975年首次发布的MOS Technology 6502版本为Commodore 64、Apple IIe、BBC Micro和Atari 8位系列提供动力。Zilog Z80(1976)是ZX光谱的核心。
The IBM PC launched in 1981 with an Intel 8088. It was not until Intel's 80286 (used in the 1984 IBM PC/AT), and later the 80386, that processors designed in the 1980s drove the computers of the 1980s. These chips had higher clock speeds and 32-bit memory access. The end of the decade saw the launch of the Intel 80486, the first personal computer CPU with on-chip floating point support instead of as an optional coprocessor.
IBM个人电脑于1981年推出,搭配了英特尔8088芯片。直到英特尔的80286(1984年用于IBM PC/AT)和后来的80386,在二十世纪八十年代设计的处理器才驱动了二十世纪八十年代的计算机。这些芯片具有更高的时钟速度和32位内存访问。在八十年代末,英特尔80486(80486是Intel公司1989年推出的32位微处理器。它采用了1μm(微米)制造工艺,内部集成了120万个晶体管。内外部数据总线是32位,地址总线为32位)发布,这是第一款支持芯片内浮点运算的个人计算机CPU,而不是作为可选的协处理器。
1.协处理器(coprocessor),一种芯片,用于减轻系统微处理器的特定处理任务。协处理器,这是一种协助中央处理器完成其无法执行或执行效率、效果低下的处理工作而开发和应用的处理器
2.
IBM PC的早期型号
型号 | 型号# | 发布时间 | CPU | 特点 |
PC | 5150 | 1981.08 | 8088 | 磁盘或磁带系统 |
XT | 5160 | 1983.03 | 8088 | 首用IBM个人计算机硬盘内部标准。 |
XT/370 | 5160/588 | 1983.10 | 8088 | 5160与XT / 370选项组件和3278/79仿真适配器 |
3270 PC | 5271 | 1983.10 | 8088 | 与3270终端仿真 |
PCjr | 4860 | 1983.11 | 8088 | 基于软盘的家用电脑 |
Portable | 5155 | 1984.02 | 8088 | 基于软盘的便携式 |
AT | 5170 | 1984.08 | 80286 | 中速硬盘 |
AT/370 | 5170/599 | 1984.10 | 80286 | 有370选择工具及对3278/79仿真适配器的5170 |
3270 AT | 5281 | 1985 .06 | 80286 | 与3270终端仿真 |
Convertible | 5140 | 1986.04 | 8088 | 微型软磁盘 手提便携式 |
XT 286 | 5162 | 1986.09 | 80286 | 缓慢的硬盘,但零等待状态内存的主板。这6兆赫机器其实比8兆赫ATs(当使用平面的记忆,因为零点)等待状态 |
A mid-1980s generation of GUI-driven home computers is based around the Motorola 68000: Macintosh (1984), Atari ST (1985), Amiga (1985), and X68000 (1987). Even the Sega Genesis game console, released in 1988-89, uses a 68000 as the main CPU and a Z80 for sound.
20世纪80年代中期,一代GUI驱动的家用电脑以摩托罗拉68000为基础:Macintosh(1984)、Atari ST(1985)、Amiga(1985)和X68000(1987)。就连1988-89年,发布的世嘉创世纪(Sega Genesis)游戏机也使用68000作为主CPU,Z80作为声音。(Zilog Z80,简称Z80,是一款由zilog公司制造的微处理器,与英特尔公司出产的8080微处理器的代码兼容)
Date | Name | Developer | data-sort-type="number" | Clock | data-sort-type="number" | Word size (bits) |
data-sort-type="number" | Process | data-sort-type="number" | Transistors |
---|---|---|---|---|---|---|---|---|---|---|
1980 | 16032 | National Semiconductor | - | 16/32 | - | 60,000 | ||||
1981 | 6120 | Harris Corporation | 10 MHz | 12 | - | 20,000 (CMOS)[23] | ||||
1981 | ROMP | IBM | 10 MHz | 32 | 2 μm | 45,000 | ||||
1981 | T-11 | DEC | 2.5 MHz | 16 | 5 μm | 17,000 (NMOS) | ||||
1982 | RISC-I[24] | UC Berkeley | 1 MHz | - | 5 μm | 44,420 (NMOS) | ||||
1982 | FOCUS | Hewlett Packard | 18 MHz | 32 | 1.5 μm | 450,000 | ||||
1982 | 80186 | Intel | 6 MHz | 16 | - | 55,000 | ||||
1987 | 80C186 | Intel | 10 MHz | 16 | - | 56,000 (CMOS) | ||||
1982 | 80188 | Intel | 8 MHz | 8/16 | - | 29,000 | ||||
1982 | 80286 | Intel | 6 MHz | 16 | 1.5 μm | 134,000 | ||||
1983 | RISC-II | UC Berkeley | 3 MHz | - | 3 μm | 40,760 (NMOS) | ||||
1983 | MIPS[25] | Stanford University | 2 MHz | 32 | 3 μm | 25,000 | ||||
1983 | 65816 | Western Design Center | - | 16 | - | - | ||||
1984 | 68020 | Motorola | 16 MHz | 32 | 2 μm | 190,000 | ||||
1984 | NS32032 | National Semiconductor | - | 32 | - | 70,000 | ||||
1984 | V20 | NEC | 5 MHz | 8/16 | - | 63,000 | ||||
1985 | 80386 | Intel | 16–40 MHz | 32 | 1.5 μm | 275,000 | ||||
1985 | MicroVax II 78032 | DEC | 5 MHz | 32 | 3.0 μm | 125,000 | ||||
1985 | R2000 | MIPS | 8 MHz | 32 | 2 μm | 115,000 | ||||
1985[26] | Novix NC4016 | Harris Corporation | 8 MHz | 16 | 3 μm[27] | 16,000[28] | ||||
1986 | Z80000 | Zilog | - | 32 | - | 91,000 | ||||
1986 | SPARC MB86900 | Fujitsu[29] [30] [31] | 40 MHz | 32 | 0.8 μm | 800,000 | ||||
1986 | V60[32] | NEC | 16 MHz | 16/32 | 1.5 μm | 375,000 | ||||
1987 | CVAX 78034 | DEC | 12.5 MHz | 32 | 2.0 μm | 134,000 | ||||
1987 | ARM2 | Acorn | 8 MHz | 32 | 2 μm | 25,000[33] | ||||
1987 | Gmicro/200[34] | Hitachi | - | - | 1 μm | 730,000 | ||||
1987 | 68030 | Motorola | 16 MHz | 32 | 1.3 μm | 273,000 | ||||
1987 | V70 | NEC | 20 MHz | 16/32 | 1.5 μm | 385,000 | ||||
1988 | R3000 | MIPS | 25 MHz | 32 | 1.2 μm | 120,000 | ||||
1988 | 80386SX | Intel | 12–33 MHz | 16/32 | - | - | ||||
1988 | i960 | Intel | 10 MHz | 33/32 | 1.5 μm | 250,000 | ||||
1989 | i960CA[35] | Intel | 1633 MHz | 33/32 | 0.8 μm | 600,000 | ||||
1989 | VAX DC520 "Rigel" | DEC | 35 MHz | 32 | 1.5 μm | 320,000 | ||||
1989 | 80486 | Intel | 25 MHz | 32 | 1 μm | 1,180,000 | ||||
1989 | i860 | Intel | 25 MHz | 32 | 1 μm | 1,000,000 |
1990s
The 32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999,
20世纪90年代,32位微处理器统治(主导)了消费市场。处理器的时钟速度在1990年到1999年间增加了10倍多,
and 64-bit processors began to emerge later in the decade. In the 1990s,
64位处理器在这十年的晚些时候开始被知晓。在20世纪90年代,
microprocessors no longer used the same clock speed for the processor and the RAM.
微处理器不再被处理器和RAM使用相同的时钟速度。
Processors began to have a front-side bus (FSB) clock speed used in communication with RAM and other components.
处理器开始使用前端总线(FSB)时钟速度与RAM和其他组件进行通信。
Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed.
通常,处理器本身的时钟速度是FSB时钟速度的倍数。
Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and an FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.
例如,英特尔的奔腾III内部时钟速度为450–600 MHz,FSB速度为100–133 MHz。此处仅表明的是处理器的内部时钟速度。
Date | Name | Developer | data-sort-type="number" | Clock | data-sort-type="number" | Word size (bits) |
data-sort-type="number" | Process | data-sort-type="number" | Transistors (millions) |
data-sort-type="number" | Threads |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 68040 | Motorola | 40 MHz | 32 | - | 1.2 | ||||||
1990 | POWER1 | IBM | 20–30 MHz | 32 | 1,000 nm | 6.9 | ||||||
1991 | R4000 | MIPS Computer Systems | 100 MHz | 64 | 800 nm | 1.35 | ||||||
1991 | NVAX | DEC | 62.5–90.91 MHz | - | 750 nm | 1.3 | ||||||
1991 | RSC | IBM | 33 MHz | 32 | 800 nm | 1.0[36] | ||||||
1992 | SH-1 | Hitachi | 20 MHz[37] | 32 | 800 nm | 0.6[38] | ||||||
1992 | Alpha 21064 | DEC | 100–200 MHz | 64 | 750 nm | 1.68 | ||||||
1992 | microSPARC I | Sun | 40–50 MHz | 32 | 800 nm | 0.8 | ||||||
1992 | PA-7100 | Hewlett Packard | 100 MHz | 32 | 800 nm | 0.85[39] | ||||||
1992 | 486SLC | Cyrix | 40 MHz | 16 | ||||||||
1993 | HARP-1 | Hitachi | 120 MHz | - | 500 nm | 2.8[40] | ||||||
1993 | PowerPC 601 | IBM, Motorola | 50–80 MHz | 32 | 600 nm | 2.8 | ||||||
1993 | Pentium | Intel | 60–66 MHz | 32 | 800 nm | 3.1 | ||||||
1993 | POWER2 | IBM | 55–71.5 MHz | 32 | 720 nm | 23 | ||||||
1994 | microSPARC II | Fujitsu | 60–125 MHz | - | 500 nm | 2.3 | ||||||
1994 | 68060 | Motorola | 50 MHz | 32 | 600 nm | 2.5 | ||||||
1994 | Alpha 21064A | DEC | 200–300 MHz | 64 | 500 nm | 2.85 | ||||||
1994 | R4600 | 100–125 MHz | 64 | 650 nm | 2.2 | |||||||
1994 | PA-7200 | Hewlett Packard | 125 MHz | 32 | 550 nm | 1.26 | ||||||
1994 | PowerPC 603 | IBM, Motorola | 60–120 MHz | 32 | 500 nm | 1.6 | ||||||
1994 | PowerPC 604 | IBM, Motorola | 100–180 MHz | 32 | 500 nm | 3.6 | ||||||
1994 | PA-7100LC | Hewlett Packard | 100 MHz | 32 | 750 nm | 0.90 | ||||||
1995 | Alpha 21164 | DEC | 266–333 MHz | 64 | 500 nm | 9.3 | ||||||
1995 | UltraSPARC | Sun | 143–167 MHz | 64 | 470 nm | 5.2 | ||||||
1995 | SPARC64 | HAL Computer Systems | 101–118 MHz | 64 | 400 nm | - | ||||||
1995 | Pentium Pro | Intel | 150–200 MHz | 32 | 350 nm | 5.5 | ||||||
1996 | Alpha 21164A | DEC | 400–500 MHz | 64 | 350 nm | 9.7 | ||||||
1996 | K5 | AMD | 75–100 MHz | 32 | 500 nm | 4.3 | ||||||
1996 | R10000 | MTI | 150–250 MHz | 64 | 350 nm | 6.7 | ||||||
1996 | R5000 | 180–250 MHz | - | 350 nm | 3.7 | |||||||
1996 | SPARC64 II | HAL Computer Systems | 141–161 MHz | 64 | 350 nm | - | ||||||
1996 | PA-8000 | Hewlett-Packard | 160–180 MHz | 64 | 500 nm | 3.8 | ||||||
1996 | P2SC | IBM | 150 MHz | 32 | 290 nm | 15 | ||||||
1997 | SH-4 | Hitachi | 200 MHz | - | 200 nm[41] | 10[42] | ||||||
1997 | RS64 | IBM | 125 MHz | 64 | ? nm | ? | ||||||
1997 | Pentium II | Intel | 233–300 MHz | 32 | 350 nm | 7.5 | ||||||
1997 | PowerPC 620 | IBM, Motorola | 120–150 MHz | 64 | 350 nm | 6.9 | ||||||
1997 | UltraSPARC IIs | Sun | 250–400 MHz | 64 | 350 nm | 5.4 | ||||||
1997 | S/390 G4 | IBM | 370 MHz | 32 | 500 nm | 7.8 | ||||||
1997 | PowerPC 750 | IBM, Motorola | 233–366 MHz | 32 | 260 nm | 6.35 | ||||||
1997 | K6 | AMD | 166–233 MHz | 32 | 350 nm | 8.8 | ||||||
1998 | RS64-II | IBM | 262 MHz | 64 | 350 nm | 12.5 | ||||||
1998 | Alpha 21264 | DEC | 450–600 MHz | 64 | 350 nm | 15.2 | ||||||
1998 | MIPS R12000 | SGI | 270–400 MHz | 64 | 250–180 nm | 6.9 | ||||||
1998 | RM7000 | QED | 250–300 MHz | - | 250 nm | 18 | ||||||
1998 | SPARC64 III | HAL Computer Systems | 250–330 MHz | 64 | 240 nm | 17.6 | ||||||
1998 | S/390 G5 | IBM | 500 MHz | 32 | 250 nm | 25 | ||||||
1998 | PA-8500 | Hewlett Packard | 300–440 MHz | 64 | 250 nm | 140 | ||||||
1998 | POWER3 | IBM | 200 MHz | 64 | 250 nm | 15 | ||||||
1999 | Emotion Engine | Sony, Toshiba | 294–300 MHz | - | 180–65 nm[43] | 13.5[44] | ||||||
1999 | Pentium III | Intel | 450–600 MHz | 32 | 250 nm | 9.5 | ||||||
1999 | RS64-III | IBM | 450 MHz | 64 | 220 nm | 34 | 2 | |||||
1999 | PowerPC 7400 | Motorola | 350–500 MHz | 32 | 200–130 nm | 10.5 | ||||||
1999 | Athlon | AMD | 500–1000 MHz | 32 | 250 nm | 22 |
2000s
64-bit processors became mainstream in the 2000s.
64位处理器在21世纪初成为主流.
Microprocessor clock speeds reached a ceiling because of the heat dissipation barrier.
Instead of implementing expensive and impractical cooling systems, manufacturers turned to parallel computing in the form of the multi-core processor.
微处理器的时钟速度达到了上限. 由于散热屏障,制造商没有制作昂贵且不切实际的冷却系统,而是转向多核处理器形式的并行计算。
Overclocking had its roots in the 1990s, but came into its own in the 2000s.
Off-the-shelf cooling systems designed for overclocked processors became common, and the gaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.
超频起源于20世纪90年代,但在21世纪初开始流行。为超频处理器设计的现成冷却系统变得很常见,游戏PC也出现了。在过去的十年里,晶体管数量增加了大约一个数量级,这一趋势延续了过去几十年。工艺尺寸减少了约四倍,从180纳米降至45纳米。
Date | Name | Developer | Clock | Process | Transistors (millions) | Cores per die / Dies per module | |
---|---|---|---|---|---|---|---|
2000 | Athlon XP | AMD | 1.33–1.73 GHz | 180 nm | 37.5 | 1 / 1 | |
2000 | Duron | AMD | 550 MHz–1.3 GHz | 180 nm | 25 | 1 / 1 | |
2000 | RS64-IV | IBM | 600–750 MHz | 180 nm | 44 | 1 / 2 | |
2000 | Pentium 4 | Intel | 1.3–2 GHz | 180–130 nm | 42 | 1 / 1 | |
2000 | SPARC64 IV | Fujitsu | 450–810 MHz | 130 nm | - | 1 / 1 | |
2000 | z900 | IBM | 918 MHz | 180 nm | 47 | 1 / 12, 20 | |
2001 | MIPS R14000 | SGI | 500–600 MHz | 130 nm | 7.2 | 1 / 1 | |
2001 | POWER4 | IBM | 1.1–1.4 GHz | 180–130 nm | 174 | 2 / 1, 4 | |
2001 | UltraSPARC III | Sun | 750–1200 MHz | 130 nm | 29 | 1 / 1 | |
2001 | Itanium | Intel | 733–800 MHz | 180 nm | 25 | 1 / 1 | |
2001 | PowerPC 7450 | Motorola | 733–800 MHz | 180–130 nm | 33 | 1 / 1 | |
2002 | SPARC64 V | Fujitsu | 1.1–1.35 GHz | 130 nm | 190 | 1 / 1 | |
2002 | Itanium 2 | Intel | 0.9–1 GHz | 180 nm | 410 | 1 / 1 | |
2003 | PowerPC 970 | IBM | 1.6–2.0 GHz | 130–90 nm | 52 | 1 / 1 | |
2003 | Pentium M | Intel | 0.9–1.7 GHz | 130–90 nm | 77 | 1 / 1 | |
2003 | Opteron | AMD | 1.4–2.4 GHz | 130 nm | 106 | 1 / 1 | |
2004 | POWER5 | IBM | 1.65–1.9 GHz | 130–90 nm | 276 | 2 / 1, 2, 4 | |
2004 | PowerPC BGL | IBM | 700 MHz | 130 nm | 95 | 2 / 1 | |
2005 | Opteron "Athens" | AMD | 1.6–3.0 GHz | 90 nm | 114 | 1 / 1 | |
2005 | Pentium D | Intel | 2.8–3.2 GHz | 90 nm | 115 | 1 / 2 | |
2005 | Athlon 64 X2 | AMD | 2–2.4 GHz | 90 nm | 243 | 2 / 1 | |
2005 | PowerPC 970MP | IBM | 1.2–2.5 GHz | 90 nm | 183 | 2 / 1 | |
2005 | UltraSPARC IV | Sun | 1.05–1.35 GHz | 130 nm | 66 | 2 / 1 | |
2005 | UltraSPARC T1 | Sun | 1–1.4 GHz | 90 nm | 300 | 8 / 1 | |
2005 | Xenon | IBM | 3.2 GHz | 90–45 nm | 165 | 3 / 1 | |
2006 | Core Duo | Intel | 1.1–2.33 GHz | 90–65 nm | 151 | 2 / 1 | |
2006 | Core 2 | Intel | 1.06–2.67 GHz | 65–45 nm | 291 | 2 / 1, 2 | |
2006 | Cell/B.E. | IBM, Sony, Toshiba | 3.2–4.6 GHz | 90–45 nm | 241 | 1+8 / 1 | |
2006 | Itanium "Montecito" | Intel | 1.4–1.6 GHz | 90 nm | 1720 | 2 / 1 | |
2007 | POWER6 | IBM | 3.5–4.7 GHz | 65 nm | 790 | 2 / 1 | |
2007 | SPARC64 VI | Fujitsu | 2.15–2.4 GHz | 90 nm | 543 | 2 / 1 | |
2007 | UltraSPARC T2 | Sun | 1–1.4 GHz | 65 nm | 503 | 8 / 1 | |
2007 | TILE64 | Tilera | 600–900 MHz | 90–45 nm | ? | 64 / 1 | |
2007 | Opteron "Barcelona" | AMD | 1.8–3.2 GHz | 65 nm | 463 | 4 / 1 | |
2007 | PowerPC BGP | IBM | 850 MHz | 90 nm | 208 | 4 / 1 | |
2008 | Phenom | AMD | 1.8–2.6 GHz | 65 nm | 450 | 2, 3, 4 / 1 | |
2008 | z10 | IBM | 4.4 GHz | 65 nm | 993 | 4 / 7 | |
2008 | PowerXCell 8i | IBM | 2.8–4.0 GHz | 65 nm | 250 | 1+8 / 1 | |
2008 | SPARC64 VII | Fujitsu | 2.4–2.88 GHz | 65 nm | 600 | 4 / 1 | |
2008 | Atom | Intel | 0.8–1.6 GHz | 65–45 nm | 47 | 1 / 1 | |
2008 | Core i7 | Intel | 2.66–3.2 GHz | 45–32 nm | 730 | 2, 4, 6 / 1 | |
2008 | TILEPro64 | Tilera | 600–866 MHz | 90–45 nm | ? | 64 / 1 | |
2008 | Opteron "Shanghai" | AMD | 2.3–2.9 GHz | 45 nm | 751 | 4 / 1 | |
2009 | Phenom II | AMD | 2.5–3.2 GHz | 45 nm | 758 | 2, 3, 4, 6 / 1 | |
2009 | Opteron "Istanbul" | AMD | 2.2–2.8 GHz | 45 nm | 904 | 6 / 1 |
2010s
Date | Name | Developer | Clock | Process | Transistors (millions) | Cores per die / Dies per module | threads per core |
---|---|---|---|---|---|---|---|
2010 | POWER7 | IBM | 3–4.14 GHz | 45 nm | 1200 | 4, 6, 8 / 1, 4 | 4 |
2010 | Itanium "Tukwila" | Intel | 2 GHz | 65 nm | 2000 | 2, 4 / 1 | 2 |
2010 | Opteron "Magny-cours" | AMD | 1.7–2.4 GHz | 45 nm | 1810 | 4, 6 / 2 | 1 |
2010 | Xeon "Nehalem-EX" | Intel | 1.73–2.66 GHz | 45 nm | 2300 | 4, 6, 8 / 1 | 2 |
2010 | z196 | IBM | 3.8–5.2 GHz | 45 nm | 1400 | 4 / 1, 6 | 1 |
2010 | SPARC T3 | Sun | 1.6 GHz | 45 nm | 2000 | 16 / 1 | 8 |
2010 | Fujitsu | 2.66–3.0 GHz | 45 nm | ? | 4 / 1 | 2 | |
2010 | Intel | 1.86–3.33 GHz | 32 nm | 1170 | 4–6 / 1 | 2 | |
2011 | Intel | 1.6–3.4 GHz | 32 nm | 995[45] | 2, 4 / 1 | (1,) 2 | |
2011 | AMD | 1.0–1.6 GHz | 40 nm | 380[46] | 1, 2 / 1 | 1 | |
2011 | Intel | 1.73–2.67 GHz | 32 nm | 2600 | 4, 6, 8, 10 / 1 | 1–2 | |
2011 | IBM | 1.6 GHz | 45 nm | 1470 | 18 / 1 | 4 | |
2011 | Fujitsu | 2.0 GHz | 45 nm | 760 | 8 / 1 | 2 | |
2011 | AMD | 3.1–3.6 GHz | 32 nm | 1200[47] | 4–8 / 2 | 1 | |
2011 | SPARC T4 | Oracle | 2.8–3 GHz | 40 nm | 855 | 8 / 1 | 8 |
2012 | SPARC64 IXfx | Fujitsu | 1.848 GHz | 40 nm | 1870 | 16 / 1 | 2 |
2012 | zEC12 | IBM | 5.5 GHz | 32 nm | 2750 | 6 / 6 | 1 |
2012 | POWER7+ | IBM | 3.1–5.3 GHz | 32 nm | 2100 | 8 / 1, 2 | 4 |
2012 | Itanium "Poulson" | Intel | 1.73–2.53 GHz | 32 nm | 3100 | 8 / 1 | 2 |
2013 | Intel "Haswell" | Intel | 1.9–4.4 GHz | 22 nm | 1400 | 4 / 1 | 2 |
2013 | SPARC64 X | Fujitsu | 2.8–3 GHz | 28 nm | 2950 | 16 / 1 | 2 |
2013 | SPARC T5 | Oracle | 3.6 GHz | 28 nm | 1500 | 16 / 1 | 8 |
2014 | POWER8 | IBM | 2.5–5 GHz | 22 nm | 4200 | 6, 12 / 1, 2 | 8 |
2014 | Intel "Broadwell" | Intel | 1.8-4 GHz | 14 nm | 1900 | 2, 4, 6, 8, 12, 16 / 1, 2, 4 | 2 |
2015 | z13 | IBM | 5 GHz | 22 nm | 3990 | 8 / 1 | 2 |
2015 | A8-7670K | AMD | 3.6 GHz | 28 nm | 2410 | 4 / 1 | 1 |
2017 | Zen | AMD | 3.2–4.1 GHz | 14 nm | 4800 | 8, 16, 32 / 1, 2, 4 | 2 |
2017 | z14 | IBM | 5.2 GHz | 14 nm | 6100 | 10 / 1 | 2 |
2017 | POWER9 | IBM | 4 GHz | 14 nm | 8000 | 12, 24 / 1 | 4, 8 |
2017 | SPARC M8[48] | Oracle | 5 GHz | 20 nm | ~10,000[49] | 32 | 8 |
2018 | Intel "Cannon Lake" | Intel | 2.2-3.2 GHz | 10 nm | ? | 2 / 1 | 2 |
2018 | Zen+ | AMD | 2.8-3.7 GHz | 12 nm | 4800 | 2, 4, 6, 8, 12, 16, 24, 32 / 1, 2, 4 | 1, 2 |
2019 | Zen 2 | AMD | 2-4.7 GHz | 7 nm | 3900 | 6, 8, 12, 16, 24, 32, 64 / 1, 2, 4 | 2 |
2019 | z15 | IBM | 5.2 GHz | 14 nm | 9200 | 12 / 1 | 2 |
2020s
Date | Name | Developer | Clock | Process | Transistors (millions) | Cores per die / Dies per module | threads per core | |
---|---|---|---|---|---|---|---|---|
2020 | Zen 3 | AMD | 3.4–4.9 GHz | 7 nm | ? | 6, 8, 12, 16 / | 2 | |
2020 | M1 | Apple | 3.2 GHz | 5 nm | 16000 | 8 | 1 |
See also
- Moore's law
- Transistor count per chip, chronology (晶体管数量/每个芯片,年代表)
- Timeline of instructions per second - architectural chip performance chronology
- Tick-Tock model
References and notes
- References
- Notes
- sandpile.org for x86 processor information
- Ogdin . Jerry . Microprocessor scorecard . Euromicro Newsletter . 1 . 2 . 43–77 . January 1975 . 10.1016/0303-1268(75)90008-5 .
Notes and References
- Book: Belzer . Jack . Holzman . Albert G. . Kent . Allen . Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification . 1978 . . 9780824722609 . 402 .
- Web site: 1970s: Development and evolution of microprocessors . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf . 2019-06-27 . 16 September 2020.
- Web site: Rockwell PPS-4. The Antique Chip Collector's Page. 2010-06-14.
- Ryoichi Mori. Hiroaki Tajima. Morihiko Tajima. Yoshikuni Okada. October 1977. Microprocessors in Japan. Euromicro Newsletter. 3. 4. 50–7 (51, Table 2.2). 10.1016/0303-1268(77)90111-0.
- Web site: NEC 751 (uCOM-4). The Antique Chip Collector's Page. https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm. 2011-05-25. dead. 2010-06-11.
- Web site: 1973: 12-bit engine-control microprocessor (Toshiba) . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf . 2019-06-27 . 16 September 2020.
- Encyclopedia: Allen Kent, James G. Williams . Encyclopedia of Microcomputers . 1990 . Marcel Dekker . 7 . Evolution of Computerized Maintenance Management to Generation of Random Numbers . 0-8247-2706-1 . 336 .
- Web site: Jeff . Little . Intersil Intercept Jr . 2009-03-04 . ClassicCmp .
- Web site: Intersil IM6100 CMOS 12 Bit Microprocessor family databook .
- Web site: RCA COSMAC 1801 . The Antique Chip Collector's Page . 2010-06-14.
- CDP 1800 μP Commercially available . Microcomputer Digest . 2 . 4 . 1–3 . October 1975 .
- Web site: National Semiconductor IMP-16. https://web.archive.org/web/20020207082859/http://www.antiquetech.com/chips/NSIMP-16.htm. dead. 2002-02-07. The Antique Chip Collector's Page. 2010-06-14.
- Web site: Hybrid Microprocessor . 2008-06-15 .
- HP designs Custom 16-bit μC Chip . Microcomputer Digest . 2 . 4 . 8 . October 1975 .
- David Russell . Microprocessor survey . Microprocessors . 2 . 1 . 13–20, See p. 18 . February 1978 . 10.1016/0308-5953(78)90071-5.
- Web site: Microprocessors — The Early Years 1971–1974 . The Antique Chip Collector's Page . 2010-06-16.
- Web site: CP1600 16-Bit Single-Chip Microprocessor . 1977 . data sheet . General Instrument . 2010-06-18 . dead . https://web.archive.org/web/20110526031123/http://www.rhoent.com/cp_lp.pdf . 2011-05-26 .
- Web site: RCA COSMAC 1802 . The Antique Chip Collector's Page . 2010-06-14 . dead . https://web.archive.org/web/20130102213115/http://www.antiquetech.com/chips/RCA1802.htm . 2013-01-02 .
- CDP 1802 . Microcomputer Digest . 2 . 10 . 1, 4 . April 1976 .
- Hans Hoffman . John Nemec . A fast microprocessor for control applications . Euromicro Newsletter . 3 . 3 . 53–59 . April 1977 . 10.1016/0303-1268(77)90010-4.
- Web site: Microprocessors — The Explosion 1975–1976 . The Antique Chip Collector's Page . 2010-06-18 . dead . https://web.archive.org/web/20090909151455/http://www.antiquetech.com/history/mpu1975-1976.htm . 2009-09-09 .
- Web site: Chip Hall of Fame: Motorola MC68000 Microprocessor . . . 19 June 2019 . 30 June 2017.
- Book: Harris CMOS Digital Data Book . 4–3–21 .
- Web site: Berkeley Hardware Prototypes . 2008-06-15.
- 10.1145/2465.214917. Reduced instruction set computers. 1985. Patterson, David A.. Communications of the ACM. 28. 8–21. 1493886.
- Web site: Forth chips list . 2010 . UltraTechnology .
- Book: Koopman, Philip J. . 4.4 Architecture of the NOVIX NC4016 . https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html . Stack Computers: the new wave . E. Horwood . 1989 . 0745804187 .
- Tom . Hand . The Harris RTX 2000 Microcontroller . Journal of Forth Application and Research . 6 . 1 . 0738-2022 . 1994 .
- Web site: Fujitsu to take ARM into the realm of Super . The CPU Shack Museum . June 21, 2016 . 30 June 2019.
- Web site: Fujitsu SPARC . cpu-collection.de . 30 June 2019.
- Web site: Timeline . . 30 June 2019.
- Kimura S, Komoto Y, Yano Y . Implementation of the V60/V70 and its FRM function . IEEE Micro . 8 . 2 . 22–36 . 1988 . 10.1109/40.527 . 9507994 .
- C Green . P Gülzow . L Johnson . K Meinzer . J Miller . The Experimental IHU-2 Aboard P3D . Amsat Journal . 22 . 2 . Mar–Apr 1999 . The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors.
- Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K . Realization of Gmicro/200 . IEEE Micro . 8 . 2 . 12–21 . 1988 . 10.1109/40.526 . 36938046 .
- Web site: Intel i960 Embedded Microprocessor . https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html . dead . 3 March 2003 . . . 29 June 2019 . 3 March 2003.
- Moore CR, Balser DM, Muhich JS, East RE . IBM Single Chip RISC Processor (RSC) . Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors . IEEE Computer Society . 200–4 . 1992 . 0-8186-3110-4.
- Embedded-DSP SuperH Family and Its Applications . Hitachi Review . 1998 . 47 . 4 . 121–7 . . 43356065 . https://web.archive.org/web/20190225114235/http://pdfs.semanticscholar.org/5ef8/dda794a72f0f9c3c347b0a2db9bd1a081571.pdf . dead . 2019-02-25 . 5 July 2019.
- Web site: SH Microprocessor Leading the Nomadic Era . Semiconductor History Museum of Japan . 27 June 2019.
- Web site: PA-RISC Processors . 2008-05-11 .
- Web site: HARP-1: A 120 MHz Superscalar PA-RISC Processor . . 19 June 2019.
- Entertainment Systems and High-Performance Processor SH-4 . Hitachi Review . 1999 . 48 . 2 . 58–63 . . 44852046 . https://web.archive.org/web/20190221030542/http://pdfs.semanticscholar.org/2dae/557444cd159c68d9a557189c70a68de0d233.pdf . dead . 2019-02-21 . 27 June 2019.
- Web site: Remembering the Sega Dreamcast . . 18 June 2019 . September 29, 2009.
- News: EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP . 26 June 2019 . . April 21, 2003.
- Book: Hennessy. John L. . John L. Hennessy . Patterson. David A. . David Patterson (scientist). Computer Architecture: A Quantitative Approach. 491. 9 April 2013. 3. 29 May 2002. Morgan Kaufmann. 978-0-08-050252-6.
- Web site: Anand Lal Shimpi . A Closer Look at the Sandy Bridge Die . 10 January 2011 . AnandTech .
- Book: renethx . Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process . AMD Zacate — the next great HTPC chip? . 10 November 2011 . AVS Forum . http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009.
- Web site: AMD Revises Bulldozer Transistor Count: 1.2B, not 2B . 2 December 2011 . AnandTech .
- Web site: Sparc M8 processor . Oracle main website . Oracle Corp . 3 March 2019.
- https://www.nextplatform.com/2017/09/18/m8-last-hurrah-oracle-sparc/
这篇关于Microprocessor chronology(微处理器年代表)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享