TextCNN情感实验

2022/4/25 6:18:29

本文主要是介绍TextCNN情感实验,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

情感分析是自然语言处理文本分类任务的应用场景之一,情感分类较为简单,实用性也较强。常见的购物网站、电影网站都可以采集到相对高质量的数据集,也很容易给业务领域带来收益。例如,可以结合领域上下文,自动分析特定类型客户对当前产品的意见,可以分主题分用户类型对情感进行分析,以作针对性的处理,甚至基于此进一步推荐产品,提高转化率,带来更高的商业收益。

本实验主要基于卷积神经网络对电影评论信息进行情感分析,判断其情感倾向。

数据集说明

分为两个,一个是‘Positive comments’、一个是‘Negative comments’。

Positive comments
the rock is destined to be the 21st century's new " conan " and that he's going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .
the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .
effective but too-tepid biopic
if you sometimes like to go to the movies to have fun , wasabi is a good place to start .
emerges as something rare , an issue movie that's so honest and keenly observed that it doesn't feel like one .
the film provides some great insight into the neurotic mindset of all comics -- even those who have reached the absolute top of the game .
offers that rare combination of entertainment and education .
perhaps no picture ever made has more literally showed that the road to hell is paved with good intentions .
· · · · · · 共计5330句正向评论
Negative comments
simplistic , silly and tedious .
it's so laddish and juvenile , only teenage boys could possibly find it funny .
exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .
[garbus] discards the potential for pathological study , exhuming instead , the skewed melodrama of the circumstantial situation .
a visually flashy but narratively opaque and emotionally vapid exercise in style and mystification .
the story is also as unoriginal as they come , already having been recycled more times than i'd care to count .
about the only thing to give the movie points for is bravado -- to take an entirely stale concept and push it through the audience's meat grinder one more time .
not so much farcical as sour .
· · · · · · 共计5331句反向评论

实现代码分析

导入依赖库

import math
import numpy as np
import pandas as pd
import os
import math
import random
import codecs
from pathlib import Path

import mindspore
import mindspore.dataset as ds
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.train.model import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.ops import operations as ops

超参数设置

from easydict import EasyDict as edict

cfg = edict({
    'name': 'movie review',
    'pre_trained': False,
    'num_classes': 2,
    'batch_size': 64,
    'epoch_size': 4,
    'weight_decay': 3e-5,
    'data_path': './data/',
    'device_target': 'Ascend',
    'device_id': 0,
    'keep_checkpoint_max': 1,
    'checkpoint_path': './ckpt/train_textcnn-4_149.ckpt',
    'word_len': 51,
    'vec_length': 40
})

运行环境设置

context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target, device_id=cfg.device_id)

数据预览

# 数据预览
with open("./data/rt-polarity.neg", 'r', encoding='utf-8') as f:
        print("Negative reivews:")
        for i in range(5):
            print("[{0}]:{1}".format(i,f.readline()))
with open("./data/rt-polarity.pos", 'r', encoding='utf-8') as f:
        print("Positive reivews:")
        for i in range(5):
            print("[{0}]:{1}".format(i,f.readline()))

定义数据生成类

#定义数据生成类
class Generator():
    def __init__(self, input_list):
        self.input_list=input_list
    def __getitem__(self,item):
        return (np.array(self.input_list[item][0],dtype=np.int32),
                np.array(self.input_list[item][1],dtype=np.int32))
    def __len__(self):
        return len(self.input_list)

输入

class MovieReview:
    '''
    影评数据集
    '''
    def __init__(self, root_dir, maxlen, split):
        '''
        input:
            root_dir: 影评数据目录
            maxlen: 设置句子最大长度
            split: 设置数据集中训练/评估的比例
        '''
        self.path = root_dir
        self.feelMap = {
            'neg':0,
            'pos':1
        }
        self.files = []

        self.doConvert = False
        
        mypath = Path(self.path)
        if not mypath.exists() or not mypath.is_dir():
            print("please check the root_dir!")
            raise ValueError

        # 在数据目录中找到文件
        for root,_,filename in os.walk(self.path):
            for each in filename:
                self.files.append(os.path.join(root,each))
            break

        # 确认是否为两个文件.neg与.pos
        if len(self.files) != 2:
            print("There are {} files in the root_dir".format(len(self.files)))
            raise ValueError

        # 读取数据
        self.word_num = 0
        self.maxlen = 0
        self.minlen = float("inf")
        self.maxlen = float("-inf")
        self.Pos = []
        self.Neg = []
        for filename in self.files:
            self.read_data(filename)

        self.text2vec(maxlen=maxlen)
        self.split_dataset(split=split)

    def read_data(self, filePath):
        with open(filePath,'r') as f:
            for sentence in f.readlines():
                sentence = sentence.replace('\n','')\
                                    .replace('"','')\
                                    .replace('\'','')\
                                    .replace('.','')\
                                    .replace(',','')\
                                    .replace('[','')\
                                    .replace(']','')\
                                    .replace('(','')\
                                    .replace(')','')\
                                    .replace(':','')\
                                    .replace('--','')\
                                    .replace('-',' ')\
                                    .replace('\\','')\
                                    .replace('0','')\
                                    .replace('1','')\
                                    .replace('2','')\
                                    .replace('3','')\
                                    .replace('4','')\
                                    .replace('5','')\
                                    .replace('6','')\
                                    .replace('7','')\
                                    .replace('8','')\
                                    .replace('9','')\
                                    .replace('`','')\
                                    .replace('=','')\
                                    .replace('$','')\
                                    .replace('/','')\
                                    .replace('*','')\
                                    .replace(';','')\
                                    .replace('<b>','')\
                                    .replace('%','')
                sentence = sentence.split(' ')
                sentence = list(filter(lambda x: x, sentence))
                if sentence:
                    self.word_num += len(sentence)
                    self.maxlen = self.maxlen if self.maxlen >= len(sentence) else len(sentence)
                    self.minlen = self.minlen if self.minlen <= len(sentence) else len(sentence)
                    if 'pos' in filePath:
                        self.Pos.append([sentence,self.feelMap['pos']])
                    else:
                        self.Neg.append([sentence,self.feelMap['neg']])

    def text2vec(self, maxlen):
        '''
        将句子转化为向量

        '''
        # Vocab = {word : index}
        self.Vocab = dict()

        # self.Vocab['None']
        for SentenceLabel in self.Pos+self.Neg:
            vector = [0]*maxlen
            for index, word in enumerate(SentenceLabel[0]):
                if index >= maxlen:
                    break
                if word not in self.Vocab.keys():
                    self.Vocab[word] = len(self.Vocab)
                    vector[index] = len(self.Vocab) - 1
                else:
                    vector[index] = self.Vocab[word]
            SentenceLabel[0] = vector
        self.doConvert = True

    def split_dataset(self, split):
        '''
        分割为训练集与测试集

        '''

        trunk_pos_size = math.ceil((1-split)*len(self.Pos))
        trunk_neg_size = math.ceil((1-split)*len(self.Neg))
        trunk_num = int(1/(1-split))
        pos_temp=list()
        neg_temp=list()
        for index in range(trunk_num):
            pos_temp.append(self.Pos[index*trunk_pos_size:(index+1)*trunk_pos_size])
            neg_temp.append(self.Neg[index*trunk_neg_size:(index+1)*trunk_neg_size])
        self.test = pos_temp.pop(2)+neg_temp.pop(2)
        self.train = [i for item in pos_temp+neg_temp for i in item]

        random.shuffle(self.train)
        # random.shuffle(self.test)

    def get_dict_len(self):
        '''
        获得数据集中文字组成的词典长度
        '''
        if self.doConvert:
            return len(self.Vocab)
        else:
            print("Haven't finished Text2Vec")
            return -1

    def create_train_dataset(self, epoch_size, batch_size):
        dataset = ds.GeneratorDataset(
                                        source=Generator(input_list=self.train), 
                                        column_names=["data","label"], 
                                        shuffle=False
                                        )
        dataset=dataset.batch(batch_size=batch_size,drop_remainder=True)
        dataset=dataset.repeat(epoch_size)
        return dataset

    def create_test_dataset(self, batch_size):
        dataset = ds.GeneratorDataset(
                                        source=Generator(input_list=self.test), 
                                        column_names=["data","label"], 
                                        shuffle=False
                                        )
        dataset=dataset.batch(batch_size=batch_size,drop_remainder=True)
        return dataset

生成数据集

instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
dataset = instance.create_train_dataset(batch_size=cfg.batch_size,epoch_size=cfg.epoch_size)
batch_num = dataset.get_dataset_size()

展示结果

vocab_size=instance.get_dict_len()
print("vocab_size:{0}".format(vocab_size))
item =dataset.create_dict_iterator()
for i,data in enumerate(item):
    if i<1:
        print(data)
        print(data['data'][1])
    else:
        break

训练参数设置

learning_rate = []
warm_up = [1e-3 / math.floor(cfg.epoch_size / 5) * (i + 1) for _ in range(batch_num) 
           for i in range(math.floor(cfg.epoch_size / 5))]
shrink = [1e-3 / (16 * (i + 1)) for _ in range(batch_num) 
          for i in range(math.floor(cfg.epoch_size * 3 / 5))]
normal_run = [1e-3 for _ in range(batch_num) for i in 
              range(cfg.epoch_size - math.floor(cfg.epoch_size / 5) 
                    - math.floor(cfg.epoch_size * 2 / 5))]
learning_rate = learning_rate + warm_up + normal_run + shrink

定义TextCNN

def _weight_variable(shape, factor=0.01):
    init_value = np.random.randn(*shape).astype(np.float32) * factor
    return Tensor(init_value)

def make_conv_layer(kernel_size):
    weight_shape = (96, 1, *kernel_size)
    weight = _weight_variable(weight_shape)
    return nn.Conv2d(in_channels=1, out_channels=96, kernel_size=kernel_size, padding=1,
                     pad_mode="pad", weight_init=weight, has_bias=True)


class TextCNN(nn.Cell):
    def __init__(self, vocab_len, word_len, num_classes, vec_length):
        super(TextCNN, self).__init__()
        self.vec_length = vec_length
        self.word_len = word_len
        self.num_classes = num_classes

        self.unsqueeze = ops.ExpandDims()
        self.embedding = nn.Embedding(vocab_len, self.vec_length, embedding_table='normal')

        self.slice = ops.Slice()
        self.layer1 = self.make_layer(kernel_height=3)
        self.layer2 = self.make_layer(kernel_height=4)
        self.layer3 = self.make_layer(kernel_height=5)

        self.concat = ops.Concat(1)

        self.fc = nn.Dense(96*3, self.num_classes)
        self.drop = nn.Dropout(keep_prob=0.5)
        self.print = ops.Print()
        self.reducemean = ops.ReduceMax(keep_dims=False)
        
    def make_layer(self, kernel_height):
        return nn.SequentialCell(
            [
                make_conv_layer((kernel_height,self.vec_length)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(self.word_len-kernel_height+1,1)),
            ]
        )

    def construct(self,x):
        x = self.unsqueeze(x, 1)
        x = self.embedding(x)
        x1 = self.layer1(x)
        x2 = self.layer2(x)
        x3 = self.layer3(x)

        x1 = self.reducemean(x1, (2, 3))
        x2 = self.reducemean(x2, (2, 3))
        x3 = self.reducemean(x3, (2, 3))

        x = self.concat((x1, x2, x3))
        x = self.drop(x)
        x = self.fc(x)
        return x

实例化

net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len, 
              num_classes=cfg.num_classes, vec_length=cfg.vec_length)

定义训练相关参数

# 优化器、损失函数、保存检查点、时间监视器等设置
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), 
              learning_rate=learning_rate, weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
config_ck = CheckpointConfig(save_checkpoint_steps=int(cfg.epoch_size*batch_num/2), keep_checkpoint_max=cfg.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=batch_num)
ckpt_save_dir = "./ckpt"
ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck)
loss_cb = LossMonitor()

启动训练

model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("train success")

测试评估

# 导入训练生成的checkpoint
checkpoint_path = './ckpt/train_textcnn-4_596.ckpt'
# 生成测试数据集
dataset = instance.create_test_dataset(batch_size=cfg.batch_size)
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), 
              learning_rate=0.001, weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
net = TextCNN(vocab_len=instance.get_dict_len(),word_len=cfg.word_len,
                  num_classes=cfg.num_classes,vec_length=cfg.vec_length)

if checkpoint_path is not None:
    param_dict = load_checkpoint(checkpoint_path)
    print("load checkpoint from [{}].".format(checkpoint_path))
else:
    param_dict = load_checkpoint(cfg.checkpoint_path)
    print("load checkpoint from [{}].".format(cfg.checkpoint_path))

load_param_into_net(net, param_dict)
net.set_train(False)
model = Model(net, loss_fn=loss, metrics={'acc': Accuracy()})

acc = model.eval(dataset)
print("accuracy: ", acc)

在线测试

定义前处理函数

def preprocess(sentence):
    sentence = sentence.lower().strip()
    sentence = sentence.replace('\n','')\
                                    .replace('"','')\
                                    .replace('\'','')\
                                    .replace('.','')\
                                    .replace(',','')\
                                    .replace('[','')\
                                    .replace(']','')\
                                    .replace('(','')\
                                    .replace(')','')\
                                    .replace(':','')\
                                    .replace('--','')\
                                    .replace('-',' ')\
                                    .replace('\\','')\
                                    .replace('0','')\
                                    .replace('1','')\
                                    .replace('2','')\
                                    .replace('3','')\
                                    .replace('4','')\
                                    .replace('5','')\
                                    .replace('6','')\
                                    .replace('7','')\
                                    .replace('8','')\
                                    .replace('9','')\
                                    .replace('`','')\
                                    .replace('=','')\
                                    .replace('$','')\
                                    .replace('/','')\
                                    .replace('*','')\
                                    .replace(';','')\
                                    .replace('<b>','')\
                                    .replace('%','')\
                                    .replace("  "," ")
    sentence = sentence.split(' ')
    maxlen = cfg.word_len
    vector = [0]*maxlen
    for index, word in enumerate(sentence):
        if index >= maxlen:
            break
        if word not in instance.Vocab.keys():
            print(word,"单词未出现在字典中")
        else:
            vector[index] = instance.Vocab[word]
    sentence = vector

    return sentence

def inference(review_en):
    review_en = preprocess(review_en)
    input_en = Tensor(np.array([review_en]).astype(np.int32))
    output = net(input_en)
    if np.argmax(np.array(output[0])) == 1:
        print("Positive comments")
    else:
        print("Negative comments")

测试

review_en = "the movie is so boring"
inference(review_en)



这篇关于TextCNN情感实验的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程