7.Spark SQL
2022/5/12 2:25:52
本文主要是介绍7.Spark SQL,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
------------恢复内容开始------------
1.请分析SparkSQL出现的原因,并简述SparkSQL的起源与发展。
Shark提供了类似于Hive的功能,与Hive不同的是,Shark把SQL语句转换成Spark作业,而不是MAPreduce作业。为了实现Hive的兼容,Shark重用了Hive中的Hive SQL解析、逻辑执行计划翻译、执行计划优化等逻辑。可以近似的认为,Sark仅仅将物理执行计划从Map Reduce作业替换成了Spark作业,也就是通过Hive的HiveSQL解析功能,把Hive SQL翻译成Spark上的RDD操作。Shark的出现,使得SQL-on-Hadoop的性能比Hive有了10~100倍的提高。
2.简述RDD 和DataFrame的联系与区别?
Rdd是分布式的Java对象的集合,但是,对象内部的结构对于RDD来说是不可知的。Data Frame是一种以RDD为基础的分布式数据集,提供详细的结构信息,就相当于关系数据库的一张表。
3.DataFrame的创建
spark.read.text(url)
spark.read.json(url)
spark.read.format("text").load("people.txt")
spark.read.format("json").load("people.json")
描述从不同文件类型生成DataFrame的区别。
用相同的txt或json文件,同时创建RDD,比较RDD与DataFrame的区别。
区别:RDD是直接输出对象,DataFrame是以对象里面的的详细结构进行输出
4.PySpark-DataFrame各种常用操作
4.1基于df的操作:
打印数据 df.show()默认打印前20条数据
打印概要 df.printSchema()
查询总行数 df.count()
df.head(3) #list类型,list中每个元素是Row类
输出全部行 df.collect() #list类型,list中每个元素是Row类
查询概况 df.describe().show()
取列 的三种方式 df[‘name’], df.name, df[1]
选择 df.select() 每个人的年龄+1
筛选 df.filter() 20岁以上的人员信息
筛选年龄为空的人员信息
分组df.groupBy() 统计每个年龄的人数
排序df.sortBy() 按年龄进行排序
4.2基于spark.sql的操作:
创建临时表虚拟表 df.registerTempTable('people')
spark.sql执行SQL语句 spark.sql('select name from people').show()
5.Pyspark中DataFrame与pandas中DataFrame
分别从文件创建DataFrame
pandas中DataFrame转换为Pyspark中DataFrame
Pyspark中DataFrame转换为pandas中DataFrame
从创建与操作上,比较两者的异同
pandas DataFrame有索引生成,而spark DateFrame没有索引
6.从RDD转换得到DataFrame
6.1 利用反射机制推断RDD模式
创建RDD sc.textFile(url).map(),读文件,分割数据项
每个RDD元素转换成 Row
由Row-RDD转换到DataFrame
6.2 使用编程方式定义RDD模式
#下面生成“表头”
schemaString = "name age"
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split(" ")]
schema = StructType(fields)
#下面生成“表中的记录”
lines = spark.sparkContext.textFile("file:///home/hadoop/people.txt")
parts = lines.map(lambda x :x.split(","))
people = parts.map(lambda p:Row(p[0],p[1].strip()))
#下面把“表头”和“表中的记录”拼装在一起
schemaPeople = spark.createDataFrame(people, schema)
7. DataFrame的保存
df.write.text(dir)
df.write.json(dri)
df.write.format("text").save(dir)
df.write.format("json").save(dir)
df.write.format("json").save(dir)
这篇关于7.Spark SQL的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南