全国疫情数据可视化展示(详细介绍,含完整源码)
2022/5/23 1:04:22
本文主要是介绍全国疫情数据可视化展示(详细介绍,含完整源码),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、全国疫情数据爬取
1.数据表共有两个,分别为details和history,表结构如下:
2.爬取全国疫情数据代码如下:
import requests import json import time import pymysql import traceback def get_details(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&callback=jQuery34102848205531413024_1584924641755&_=1584924641756' headers ={ 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.25 Safari/537.36 Core/1.70.3741.400 QQBrowser/10.5.3863.400' } res = requests.get(url,headers=headers) #输出全部信息 # print(res.text) response_data = json.loads(res.text.replace('jQuery34102848205531413024_1584924641755(','')[:-1]) #输出这个字典的键值 dict_keys(['ret', 'data'])ret是响应值,0代表请求成功,data里是我们需要的数据 # print(response_data.keys()) """上面已经转化过一次字典,然后获取里面的data,因为data是字符串,所以需要再次转化字典 print(json.loads(reponse_data['data']).keys()) 结果: dict_keys(['lastUpdateTime', 'chinaTotal', 'chinaAdd', 'isShowAdd', 'showAddSwitch', 'areaTree', 'chinaDayList', 'chinaDayAddList', 'dailyNewAddHistory', 'dailyHistory', 'wuhanDayList', 'articleList']) lastUpdateTime是最新更新时间,chinaTotal是全国疫情总数,chinaAdd是全国新增数据, isShowAdd代表是否展示新增数据,showAddSwitch是显示哪些数据,areaTree中有全国疫情数据 """ areaTree_data = json.loads(response_data['data'])['areaTree'] temp=json.loads(response_data['data']) # print(temp.keys()) # print(areaTree_data[0].keys()) """ 获取上一级字典里的areaTree 然后查看里面中国键值 print(areaTree_data[0].keys()) dict_keys(['name', 'today', 'total', 'children']) name代表国家名称,today代表今日数据,total代表总数,children里有全国各地数据,我们需要获取全国各地数据,查看children数据 print(areaTree_data[0]['children']) 这里面是 name是地区名称,today是今日数据,total是总数,children是市级数据, 我们通过这个接口可以获取每个地区的总数据。我们遍历这个列表,取出name,这个是省级的数据,还需要获取市级数据, 需要取出name,children(市级数据)下的name、total(历史总数)下的confirm、heal、dead,today(今日数据)下的confirm(增加数), 这些就是我们需要的数据 """ # print(areaTree_data[0]['children']) # for province_data in areaTree_data[0]['children']: # print(province_data) ds= temp['lastUpdateTime'] details=[] for pro_infos in areaTree_data[0]['children']: province_name = pro_infos['name'] # 省名 for city_infos in pro_infos['children']: city_name = city_infos['name'] # 市名 confirm = city_infos['total']['confirm']#历史总数 confirm_add = city_infos['today']['confirm']#今日增加数 heal = city_infos['total']['heal']#治愈 dead = city_infos['total']['dead']#死亡 # print(ds,province_name,city_name,confirm,confirm_add,heal,dead) details.append([ds,province_name,city_name,confirm,confirm_add,heal,dead]) return details def get_history(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_other&callback=jQuery341026745307075030955_1584946267054&_=1584946267055' headers ={ 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.25 Safari/537.36 Core/1.70.3741.400 QQBrowser/10.5.3863.400' } res = requests.get(url,headers=headers) # print(res.text) response_data = json.loads(res.text.replace('jQuery341026745307075030955_1584946267054(','')[:-1]) # print(response_data) data = json.loads(response_data['data']) # print(data.keys()) chinaDayList = data['chinaDayList']#历史记录 chinaDayAddList = data['chinaDayAddList']#历史新增记录 history = {} for i in chinaDayList: ds = '2021.' + i['date']#时间 tup = time.strptime(ds,'%Y.%m.%d') ds = time.strftime('%Y-%m-%d',tup)#改变时间格式,插入数据库 confirm = i['confirm'] suspect = i['suspect'] heal = i['heal'] dead = i['dead'] history[ds] = {'confirm':confirm,'suspect':suspect,'heal':heal,'dead':dead} for i in chinaDayAddList: ds = '2021.' + i['date']#时间 tup = time.strptime(ds,'%Y.%m.%d') ds = time.strftime('%Y-%m-%d',tup)#改变时间格式,插入数据库 confirm_add = i['confirm'] suspect_add = i['suspect'] heal_add = i['heal'] dead_add = i['dead'] history[ds].update({'confirm_add':confirm_add,'suspect_add':suspect_add,'heal_add':heal_add,'dead_add':dead_add}) return history def get_conn(): """ :return: 连接,游标 """ # 创建连接 conn = pymysql.connect(host="127.0.0.1", user="root", password="417020", db="db", charset="utf8") # 创建游标 cursor = conn.cursor() # 执行完毕返回的结果集默认以元组显示 return conn, cursor def close_conn(conn, cursor): if cursor: cursor.close() if conn: conn.close() def update_details(): """ 更新 details 表 :return: """ cursor = None conn = None try: li = get_details() conn, cursor = get_conn() sql = "insert into details(update_time,province,city,confirm,confirm_add,heal,dead) values(%s,%s,%s,%s,%s,%s,%s)" sql_query = 'select %s=(select update_time from details order by id desc limit 1)' #对比当前最大时间戳 cursor.execute(sql_query,li[0][0]) if not cursor.fetchone()[0]: print(f"{time.asctime()}开始更新最新数据") for item in li: cursor.execute(sql, item) conn.commit() # 提交事务 update delete insert操作 print(f"{time.asctime()}更新最新数据完毕") else: print(f"{time.asctime()}已是最新数据!") except: traceback.print_exc() finally: close_conn(conn, cursor) def insert_history(): """ 插入历史数据 :return: """ cursor = None conn = None try: dic = get_history() print(f"{time.asctime()}开始插入历史数据") conn, cursor = get_conn() sql = "insert into history values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" for k, v in dic.items(): # item 格式 {'2021-01-13': {'confirm': 41, 'suspect': 0, 'heal': 0, 'dead': 1} cursor.execute(sql, [k, v.get("confirm"), v.get("confirm_add"), v.get("suspect"), v.get("suspect_add"), v.get("heal"), v.get("heal_add"), v.get("dead"), v.get("dead_add")]) conn.commit() # 提交事务 update delete insert操作 print(f"{time.asctime()}插入历史数据完毕") except: traceback.print_exc() finally: close_conn(conn, cursor) def insert_history(): """ 插入历史数据 :return: """ cursor = None conn = None try: dic = get_history() print(f"{time.asctime()}开始插入历史数据") conn, cursor = get_conn() sql = "insert into history values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" for k, v in dic.items(): # item 格式 {'2021-01-13': {'confirm': 41, 'suspect': 0, 'heal': 0, 'dead': 1} cursor.execute(sql, [k, v.get("confirm"), v.get("confirm_add"), v.get("suspect"), v.get("suspect_add"), v.get("heal"), v.get("heal_add"), v.get("dead"), v.get("dead_add")]) conn.commit() # 提交事务 update delete insert操作 print(f"{time.asctime()}插入历史数据完毕") except: traceback.print_exc() finally: close_conn(conn, cursor) def update_history(): """ 更新历史数据 :return: """ cursor = None conn = None try: dic = get_history() print(f"{time.asctime()}开始更新历史数据") conn, cursor = get_conn() sql = "insert into history values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" sql_query = "select confirm from history where ds=%s" for k, v in dic.items(): # item 格式 {'2020-01-13': {'confirm': 41, 'suspect': 0, 'heal': 0, 'dead': 1} if not cursor.execute(sql_query, k): cursor.execute(sql, [k, v.get("confirm"), v.get("confirm_add"), v.get("suspect"), v.get("suspect_add"), v.get("heal"), v.get("heal_add"), v.get("dead"), v.get("dead_add")]) conn.commit() # 提交事务 update delete insert操作 print(f"{time.asctime()}历史数据更新完毕") except: traceback.print_exc() finally: close_conn(conn, cursor) update_history() insert_history() update_details()
二、完整项目代码
1.项目结构:
2..js文件
ec_center.js
var ec_center=echarts.init(document.getElementById('c2'),"dark"); var mydata=[{'name':'上海','value':318},{'name':'云南','value':162}] var ec_center_option={ title:{ text: '', subtext: '', x: 'left' }, tooltip:{ trigger:'item' }, //左侧小导航图标 visualMap:{ show:true, x:'left', y:'bottom', textStyle:{ fontSize:8, }, splitList: [{start:1,end:9}, {start:10,end:99}, {start:100,end:999}, {start:1000,end:9999}, {start:1000000}], color:['#8A3310','#C64918','#E55B25','#F2AD92','#F9DCD1'] }, series:[{ name:'累计确诊人数', type:'map', mapType:'china', roam:false, itemStyle:{ normal:{ borderWidth:.5,//区域边框宽度 borderColor:'#009fe8',//区域边框颜色 areaColor:'#ffefd5',//区域颜色 }, emphasis:{//鼠标划过地图高亮 borderWidth:.5, borderColor:'#4b0082', areaColor:"#fff", } }, label:{ normal:{ show:true, fontSize:8, }, emphasis:{ show:true, fontSize:8, } }, data:mydata//数据 }] }; ec_center.setOption(ec_center_option)
controller.js:
function gettime(){ $.ajax({ url:"/time", timeout:10000, success: function(data) { $("#time").html(data) }, error:function(xhr,type,errorThrowm){ } }); } function get_c1_data(){ $.ajax({ url:"/c1", success: function(data) { $(".num h1").eq(0).text(data.confirm) $(".num h1").eq(1).text(data.suspect) $(".num h1").eq(2).text(data.heal) $(".num h1").eq(3).text(data.dead) }, error:function(xhr,type,errorThrowm){ } }) } function get_c2_data(){ $.ajax({ url:"/c2", success: function(data) { ec_center_option.series[0].data=data.data ec_center.setOption(ec_center_option) }, error:function(xhr,type,errorThrowm){ } }) } function get_l1_data(){ $.ajax({ url:"/l1", success: function(data) { ec_left1_Option.xAxis[0].data=data.day ec_left1_Option.series[0].data=data.confirm ec_left1_Option.series[1].data=data.suspect ec_left1_Option.series[2].data=data.heal ec_left1_Option.series[3].data=data.dead ec_left1.setOption(ec_left1_Option) }, error:function(xhr,type,errorThrowm){ } }) } function get_l2_data(){ $.ajax({ url:"/l2", success: function(data) { ec_left2_Option.xAxis[0].data=data.day ec_left2_Option.series[0].data=data.confirm_add ec_left2_Option.series[1].data=data.suspect_add ec_left2.setOption(ec_left2_Option) }, error:function(xhr,type,errorThrowm){ } }) } function get_r1_data(){ $.ajax({ url:"/r1", success: function(data) { ec_right1_Option.xAxis.data=data.city; ec_right1_Option.series[0].data=data.confirm; ec_right1.setOption(ec_right1_Option); } }) } function get_r2_data(){ $.ajax({ url:"/r2", success: function(data) { ec_right2_Option.xAxis.data=data.city; ec_right2_Option.series[0].data=data.confirm; ec_right2.setOption(ec_right2_Option); } }) } gettime() get_c1_data() get_c2_data() get_l1_data() get_l2_data() get_r1_data() get_r2_data() //setInterval(gettime,1000) //setInterval(get_c1_data,1000)
ec_left1.js:
var ec_left1 = echarts.init(document.getElementById('l1'), "dark"); var ec_left1_Option = { title: { text: "全国累计趋势", textStyle: { //color:'white', }, left: 'left', }, tooltip: { trigger: 'axis', axisPointer: { type: 'line', lineStyle: { color: '#7171C6' } }, }, legend: { data: ["累计确诊", "现有疑似", "累积治愈", "累计死亡"], left: "right" }, //图形位置 grid: { left: '4%', right: '6%', bottom: '4%', top: 50, containLabel: true }, xAxis: [{ type: 'category', data: ['01.24', '01.25', '01.26'] }], yAxis: [{ type: 'value', axisLabel: { show: true, color: 'white', fontSize: 12, formatter: function(value) { if (value >= 1000) { value = value / 1000 + 'k'; } return value; } }, //y轴线设置显示 axisLine: { show: true }, //与x轴平行的线样式 splitLine: { show: true, lineStyle: { color: '#17273B', width: 1, type: 'solid', } } }], series: [{ name: "累计确诊", type: 'line', smooth: true, data: [260, 406, 529] }, { name: "现有疑似", type: 'line', smooth: true, data: [54, 37, 3935]}, { name: "累积治愈", type: 'line', smooth: true, data: [25, 25, 25] },{ name: "累计死亡", type: 'line', smooth: true, data: [6, 9, 17] }] }; ec_left1.setOption(ec_left1_Option)
ec_left2.js:
var ec_left2 = echarts.init(document.getElementById('l2'), "dark"); var ec_left2_Option = { tooltip: { trigger: 'axis', //指示器 axisPointer: { type: 'line', lineStyle: { color: '#7171C6' } }, }, legend: { data: ['新增确诊', '新增疑似'], left: "right" }, //标题样式 title: { text: "全国新增趋势", textStyle: { color:'yellow', fontSize: 16 }, left: 'left' }, //图形位置 grid: { left: '4%', right: '6%', bottom: '4%', top: 50, containLabel: true }, xAxis: [{ type: 'category', //x轴坐标点开始与结束点位置都不在最边缘 // boundaryGap : true, data: [] }], yAxis: [{ type: 'value', //y轴字体设置 //y轴线设置显示 axisLine: { show: true }, axisLabel: { show: true, color: 'white', fontSize: 12, formatter: function(value) { if (value >= 1000) { value = value / 1000 + 'k'; } return value; } }, //与x轴平行的线样式 splitLine: { show: true, lineStyle: { color: '#17273B', width: 1, type: 'solid', } } }], series: [{ name: "新增确诊", type: 'line', smooth: true, data: [] }, { name: "新增疑似", type: 'line', smooth: true, data: [] }] }; ec_left2.setOption(ec_left2_Option)
ec_right1.js:
var ec_right1=echarts.init(document.getElementById('r1'),"dark"); var ec_right1_Option={ title:{ text:"非湖北地区城市确诊TOP5", textStyle:{ color:'white', }, left:'left', }, color:['#3398DB'], tooltip:{ trigger:'axis', axisPointer:{ type:'shadow', } }, xAxis:{ type:'category', data:['东莞','珠海','境外输入','邢台','南京'] }, yAxis:{ type:'value', }, series:[{ data:[99,98,96,94,93], type:'bar', barMaxWidth:"50%" }] }; ec_right1.setOption(ec_right1_Option)
ec_right2.js:
var ec_right2=echarts.init(document.getElementById('r2'),"dark"); var ec_right2_Option={ title:{ text:"湖北地区城市确诊TOP5", textStyle:{ color:'white', }, left:'left', }, color:['#3398DB'], tooltip:{ trigger:'axis', axisPointer:{ type:'shadow', } }, xAxis:{ type:'category', data:['东莞','珠海','境外输入','邢台','南京'] }, yAxis:{ type:'value', }, series:[{ data:[99,98,96,94,93], type:'bar', barMaxWidth:"50%" }] }; ec_right2.setOption(ec_right2_Option)
(其余js文件需从Echarts官网下载) 3.main.html:
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>疫情监控</title> <script src="../static/js/jquery-3.5.1.js"></script> <script src="../static/js/jquery-3.6.0.min.js"></script> <script src="../static/js/echarts.min.js"></script> <script src="../static/js/china.js"></script> <link href="../static/css/main.css" rel="stylesheet" /> <style> </style> </head> <body> <div id="title">全国疫情实时追踪</div> <div id="time">我是时间</div> <div id="l1">我是左1</div> <div id="l2">我是左2</div> <div id="c1"> <div class="num"><h1>123</h1></div> <div class="num"><h1>123</h1></div> <div class="num"><h1>123</h1></div> <div class="num"><h1>123</h1></div> <div class="txt"><h2>累计确诊</h2></div> <div class="txt"><h2>剩余疑似</h2></div> <div class="txt"><h2>累计治愈</h2></div> <div class="txt"><h2>累计死亡</h2></div> </div> <div id="c2">我是中2</div> <div id="r1">我是右1</div> <div id="r2"></div> <script src="../static/js/ec_center.js"></script> <script src="../static/js/ec_left1.js"></script> <script src="../static/js/ec_left2.js"></script> <script src="../static/js/ec_right1.js"></script> <script src="../static/js/ec_right2.js"></script> <script src="../static/js/controller.js"></script> </body> </html>
4..py文件 main.py:
from flask import Flask from flask import request from flask import render_template from flask import jsonify import utils app = Flask(__name__) @app.route("/") def hello_world(): return render_template("main.html") @app.route("/c1") def get_c1_data(): data=utils.get_c1_data() return jsonify({"confirm":data[0],"suspect":data[1],"heal":data[2],"dead":data[3]}) @app.route("/c2") def get_c2_data(): res=[] for tup in utils.get_c2_data(): print(tup) res.append({"name":tup[0],"value":int(tup[1])}) return jsonify({"data":res}) @app.route("/l1") def get_l1_data(): data=utils.get_l1_data() day,confirm,suspect,heal,dead=[],[],[],[],[] for a,b,c,d,e in data: day.append(a.strftime("%m-%d")) confirm.append(b) suspect.append(c) heal.append(d) dead.append(e) return jsonify({"day":day,"confirm":confirm,"suspect":suspect,"heal":heal,"dead":dead}) @app.route("/l2") def get_l2_data(): data=utils.get_l2_data() day,confirm_add,suspect_add=[],[],[] for a,b,c in data: day.append(a.strftime("%m-%d")) confirm_add.append(b) suspect_add.append(c) return jsonify({"day":day,"confirm_add":confirm_add,"suspect_add":suspect_add}) @app.route("/r1") def get_r1_data(): data=utils.get_r1_data() city=[] confirm=[] for k,v in data: city.append(k) confirm.append(int(v)) return jsonify({"city":city,"confirm":confirm}) @app.route("/r2") def get_r2_data(): data=utils.get_r2_data() city=[] confirm=[] for k,v in data: city.append(k) confirm.append(int(v)) return jsonify({"city":city,"confirm":confirm}) @app.route('/ajax',methods=["get","post"]) def index3(): name=request.values.get("name") score=request.values.get("score") print(f"name:{name},score:{score}") return "10000" @app.route("/time") def get_time(): return utils.get_time() if __name__ == '__main__': app.run(debug=True)
utils.py:
import time import pymysql def get_time(): time_str=time.strftime("%Y{}%m{}%d{} %X") return time_str.format("年","月","日") def get_conn(): conn=pymysql.connect(host="127.0.0.1", user="root", password="417020", db="db", charset="utf8") cursor=conn.cursor() return conn,cursor def close_conn(conn,cursor): cursor.close() conn.close() def query(sql,*args): conn,cursor=get_conn() cursor.execute(sql,args) res=cursor.fetchall() close_conn(conn,cursor) return res def get_c1_data(): sql="select sum(confirm)," \ "(select suspect from history order by ds desc limit 1)," \ "sum(heal)," \ "sum(dead) " \ "from details " \ "where update_time=(select update_time from details order by update_time desc limit 1)" res=query(sql) return res[0] def get_c2_data(): sql = "select province,sum(confirm) from details "\ "where update_time=(select update_time from details "\ "order by update_time desc limit 1) "\ "group by province" res=query(sql) return res def get_l1_data(): sql="select ds,confirm,suspect,heal,dead from history" res = query(sql) return res def get_l2_data(): sql="select ds,confirm_add,suspect_add from history" res = query(sql) return res def get_r1_data(): sql='SELECT city,confirm FROM '\ '(select city,confirm from details '\ 'where update_time=(select update_time from details order by update_time desc limit 1) '\ 'and province not in ("湖北","北京","上海","天津","重庆") '\ 'union all '\ 'select province as city,sum(confirm) as confirm from details '\ 'where update_time=(select update_time from details order by update_time desc limit 1) '\ 'and province in ("北京","上海","天津","重庆") group by province) as a '\ 'ORDER BY confirm DESC LIMIT 5' res = query(sql) return res def get_r2_data(): sql='SELECT city,confirm FROM '\ '(select city,confirm from details '\ 'where update_time=(select update_time from details order by update_time desc limit 1) '\ 'and province in ("湖北") '\ 'union all '\ 'select province as city,sum(confirm) as confirm from details '\ 'where update_time=(select update_time from details order by update_time desc limit 1) '\ 'and province in ("北京","上海","天津") group by province) as a '\ 'ORDER BY confirm DESC LIMIT 5' res = query(sql) return res if __name__=="__main__": print(get_r1_data()) print(get_l1_data()) print(get_l2_data())
5.最终实现效果展示(更新于2022年3月28日,由于数据爬取时间原因,与官方数据相比可能存在误差):
官方数据:
这篇关于全国疫情数据可视化展示(详细介绍,含完整源码)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南