MySQL实战45讲 10
2022/7/25 2:24:22
本文主要是介绍MySQL实战45讲 10,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
10 | MySQL为什么有时候会选错索引?
使用哪个索引是由 MySQL 来确定的
可能遇到的情况:一条本来可以执行得很快的语句,却由于 MySQL 选错了索引,而导致执行速度变得很慢
先建一个简单的表,表里有 a、b 两个字段,并分别建上索引:
CREATE TABLE `t` ( `id` int(11) NOT NULL, `a` int(11) DEFAULT NULL, `b` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `a` (`a`), KEY `b` (`b`) ) ENGINE=InnoDB;
然后,我们往表 t 中插入 10 万行记录,取值按整数递增,即:(1,1,1),(2,2,2),(3,3,3) 直到 (100000,100000,100000)。
分析一条 SQL 语句:
select * from t where a between 10000 and 20000;
使用explain查看命令执行情况:
这条查询语句的执行也确实符合预期,key 这个字段值是’a’,表示优化器选择了索引 a。
接着做如下操作:
session A 开启了一个事务。随后,session B 把数据都删除后,又调用了 idata 这个存储过程,插入了 10 万行数据
这时候,session B 的查询语句 select * from t where a between 10000 and 20000 就不会再选择索引 a 了
使用对照 force index(a) 证明优化器真的选错了索引
set long_query_time=0; select * from t where a between 10000 and 20000; /*Q1*/ select * from t force index(a) where a between 10000 and 20000;/*Q2*/
- 第一句,是将慢查询日志的阈值设置为 0,表示这个线程接下来的语句都会被记录入慢查询日志中;
- 第二句,Q1 是 session B 原来的查询;
- 第三句,Q2 是加了 force index(a) 来和 session B 原来的查询语句执行情况对比。
如果使用索引 a,每次从索引 a 上拿到一个值,都要回到主键索引上查出整行数据,这个代价优化器也要算进去的。
而如果选择扫描 10 万行,是直接在主键索引上扫描的,没有额外的代价。
优化器会估算这两个选择的代价,从结果看来,优化器认为直接扫描主键索引更快。然后就错了
例子对应的是我们平常不断地删除历史数据和新增数据的场景
优化器的逻辑
优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句
在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。
扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
扫描行数是怎么判断的?
MySQL 在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。
这个统计信息就是索引的“区分度”。一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。
下图为表 t 的 show index 的结果 。虽然这个表的每一行的三个字段值都是一样的,但是在统计信息中,这三个索引的基数值并不同,而且其实都不准确。
MySQL 是怎样得到索引的基数
MySQL 使用采样统计的方法,因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。
采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数S。
数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数X,X/S超过 1/M 的时候,会自动触发重新做一次索引统计。
- 设置为 on 的时候,表示统计信息会持久化存储。这时,默认的 N 是 20,M 是 10。
- 设置为 off 的时候,表示统计信息只存储在内存中。这时,默认的 N 是 8,M 是 16。
索引统计只是一个输入,对于一个具体的语句来说,优化器还要判断,执行这个语句本身要扫描多少行。考虑回表。
如果发现 explain 的结果预估的 rows 值跟实际情况差距比较大,使用analyze table t来重新统计索引信息
不是由于索引统计信息不准确导致索引选错的情况:
依然是基于表 t,另外一个语句:
select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;
从条件上看,这个查询没有符合条件的记录,因此会返回空集合。
人工判断会选择哪一个索引?
如果使用索引 a 进行查询,那么就是扫描索引 a 的前 1000 个值,然后取到对应的 id,再到主键索引上去查出每一行,然后根据字段 b 来过滤。显然这样需要扫描 1000 行。
如果使用索引 b 进行查询,那么就是扫描索引 b 的最后 50001 个值,与上面的执行过程相同,也是需要回到主键索引上取值再判断,所以需要扫描 50001 行。
explain select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;
key 字段显示,这次优化器选择了索引 b,而 rows 字段显示需要扫描的行数是 50198。
修改语句,引导 MySQL 使用我们期望的索引。
法一:
把“order by b limit 1” 改成 “order by b,a limit 1” ,语义的逻辑是相同的。
之前优化器选择使用索引 b,是因为它认为使用索引 b 可以避免排序(b 本身是索引,已经是有序的了,如果选择索引 b 的话,不需要再做排序,只需要遍历),所以即使扫描行数多,也判定为代价更小。
现在 order by b,a 这种写法,要求按照 b,a 排序,就意味着使用这两个索引都需要排序。因此,扫描行数成了影响决策的主要条件,于是此时优化器选了只需要扫描 1000 行的索引 a。
!注意:
这种修改并不是通用的优化手段,只是刚好在这个语句里面有 limit 1,因此如果有满足条件的记录, order by b limit 1 和 order by b,a limit 1 都会返回 b 是最小的那一行,逻辑上一致,才可以这么做。
法二:
select * from (select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 100)alias limit 1;
在这个例子里,我们用 limit 100 让优化器意识到,使用 b 索引代价是很高的。其实是我们根据数据特征诱导了一下优化器,也不具备通用性。
法三:
在有些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。
总结:
由于索引统计信息不准确导致行数判断失误的问题,你可以用 analyze table 来解决。
对于其他优化器误判的情况,你可以在应用端用 force index 来强行指定索引,也可以通过修改语句来引导优化器,还可以通过增加或者删除索引来绕过这个问题。
Q:在构造第一个例子的过程中,通过 session A 的配合,让 session B 删除数据后又重新插入了一遍数据,然后就发现 explain 结果中,rows 字段从 10001 变成 37000 多。
而如果没有 session A 的配合,只是单独执行 delete from t 、call idata()、explain 这三句话,会看到 rows 字段其实还是 10000 左右。这是什么原因呢?
A:
delete 语句删掉了所有的数据,然后再通过 call idata() 插入了 10 万行数据,看上去是覆盖了原来的 10 万行。
但是,session A 开启了事务并没有提交,所以之前插入的 10 万行数据是不能删除的。这样,之前的数据每一行数据都有两个版本,旧版本是 delete 之前的数据,新版本是标记为 deleted 的数据。这样,索引 a 上的数据其实就有两份。
但是主键索引不是通过采样生成的,是直接按照表的行数来估计的。而表的行数,优化器直接用的是show table status 的值。
这篇关于MySQL实战45讲 10的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-25如何部署MySQL集群资料:新手入门教程
- 2024-12-24MySQL集群部署资料:新手入门教程
- 2024-12-24MySQL集群资料详解:新手入门教程
- 2024-12-24MySQL集群部署入门教程
- 2024-12-24部署MySQL集群学习:新手入门教程
- 2024-12-24部署MySQL集群入门:一步一步搭建指南
- 2024-12-07MySQL读写分离入门:轻松掌握数据库读写分离技术
- 2024-12-07MySQL读写分离入门教程
- 2024-12-07MySQL分库分表入门详解
- 2024-12-07MySQL分库分表入门指南