【数据结构与算法】二叉树的遍历与构造
2022/8/1 1:23:58
本文主要是介绍【数据结构与算法】二叉树的遍历与构造,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
根据先序和中序构建二叉树
测试样例:
先序:3,9,20,15,7
中序:9,3,15,20,7
结果:3,9,20,null,null,15,7
二叉树结构:
public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } }
①递归写法
public TreeNode buildTree(int[] preorder, int[] inorder) { if(preorder.length == 0) return null; TreeNode root = new TreeNode(preorder[0]); int rootIndex = 0; while (inorder[rootIndex] != preorder[0]) { rootIndex++; } int len1 = rootIndex; int len2 = preorder.length - len1 - 1; TreeNode leftTree = null; TreeNode rightTree = null; int[] leftPreOrder = new int[len1]; int[] leftInOrder = new int[len1]; int[] rightPreOrder = new int[len2]; int[] rightInOrder = new int[len2]; if(len1!=0) { for (int i = 0; i < len1;i++) { leftInOrder[i] = inorder[i]; leftPreOrder[i] = preorder[i+1]; } leftTree = buildTree(leftPreOrder, leftInOrder); } if(len2!=0) { for (int i = 0; i < len2; i++) { rightInOrder[i] = inorder[i + rootIndex + 1]; rightPreOrder[i] = preorder[i + rootIndex + 1]; } rightTree = buildTree(rightPreOrder, rightInOrder); } root.left = leftTree; root.right = rightTree; return root; }
代码写的有点乱,大题思路是每次在先序序列中找到根节点并构建,然后根据根节点在中序序列的位置,能够确定左子树节点个数len1、右子树节点个数len2以及左右子树的划分。则递归进行对左右子树的构建,然后将根节点指针指向左右子树。
比较烦人的点就是数组下标的确定:
preOrder:左子树(1,len1) 右子树(len1+1,len1+len2)
inOrder:左子树(0,len1-1)右子树(len1,len1+len2)
②非递归写法
这篇关于【数据结构与算法】二叉树的遍历与构造的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南