sha1算法实现原理深剖

2022/8/9 1:52:45

本文主要是介绍sha1算法实现原理深剖,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一、基本介绍

SHA (Security Hash Algorithm) 是美国的 NIST 和 NSA 设计的一种标准的 Hash 算法,SHA 用于数字签名的标准算法的 DSS 中,也是安全性很高的一种 Hash 算法。

SHA-1 是第一代 SHA 算法标准,后来的 SHA-224、SHA-256、SHA-384 和 SHA-512 被统称为 SHA-2。

二、实现原理

有关 SHA1 算法详情请参见 RFC 3174 http://www.ietf.org/rfc/rfc3174.txt。

RFC 3174 是SHA1算法的官方文档,(建议了解SHA1算法前,先了解下MD4 md4算法实现原理深剖 )其实现原理共分为5步:

第1步:字节填充(Append Padding Bytes)

数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数。

第2步:追加长度信息(Append Length)

数据比特位的数据长度追加到最后8字节中。【注意字节顺序与MD4不同 大小端之分】

第3步:初始化MD Buffer(Initialize MD Buffer)

这一步最简单了,定义ABCD四个4字节数组,分别赋初值即可。【注意相对于MD4 添加了H4】

    uint32_t H0 = 0x67452301;	// 0x01, 0x23, 0x45, 0x67
    uint32_t H1 = 0xEFCDAB89;	// 0x89, 0xAB, 0xCD, 0xEF
    uint32_t H2 = 0x98BADCFE;	// 0xFE, 0xDC, 0xBA, 0x98
    uint32_t H3 = 0x10325476;	// 0x76, 0x54, 0x32, 0x10
    uint32_t H4 = 0xC3D2E1F0;	// 0xF0, 0xE1, 0xD2, 0xC3

第4步:处理消息块(Process Message in 16-Byte Blocks)

这个是SHA1算法最核心的部分了,对第2步组装数据进行分块依次处理。

	/* Process each 16-word block. */
	For i = 0 to N/16-1 do

		/* Copy block i into X. */
		For j = 0 to 15 do
			Set X[j] to M[i*16+j].
		end /* of loop on j */

	a. Divide M(i) into 16 words W(0), W(1), ... , W(15), where W(0) is the left-most word.

	b. For t = 16 to 79 let
		W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)).

	c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

	d. For t = 0 to 79 do
		
		TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);

		E = D;  D = C;  C = S^30(B);  B = A; A = TEMP;

	e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E.

   end /* of loop on i */

第5步:输出(Output)

这一步也非常简单,只需要将计算后的H0、H1、H2、H3、H4进行拼接输出即可。

三、示例讲解

 

 四、代码实现

以下为C/C++代码实现:

#include <string.h>
#include <stdio.h>

#define HASH_BLOCK_SIZE         64  /* 512 bits = 64 bytes */
#define HASH_LEN_SIZE           8   /* 64 bits =  8 bytes */
#define HASH_LEN_OFFSET         56  /* 64 bytes - 8 bytes */
#define HASH_DIGEST_SIZE        16  /* 128 bits = 16 bytes */
#define HASH_ROUND_NUM          80	

typedef unsigned char		uint8_t;
typedef unsigned short int	uint16_t;
typedef unsigned int		uint32_t;
typedef unsigned long long	uint64_t;

/* Swap bytes in 32 bit value. 0x01234567 -> 0x67452301 */
#define __bswap_32(x)    \
     ((((x) & 0xff000000) >> 24)  \
     | (((x) & 0x00ff0000) >>  8) \
     | (((x) & 0x0000ff00) <<  8) \
     | (((x) & 0x000000ff) << 24))

/* SHA1 Round Constants */
static uint32_t K[4] =
{
	0x5A827999,		/* [0,  19] */
	0x6ED9EBA1,		/* [20, 39] */
	0x8F1BBCDC,		/* [40, 59] */
	0xCA62C1D6		/* [60, 79] */
};

static uint32_t F1(uint32_t X, uint32_t Y, uint32_t Z)
{
	return (X & Y) | ((~X) & Z);
}
static uint32_t F2(uint32_t X, uint32_t Y, uint32_t Z)
{
	return X ^ Y ^ Z;
}
static uint32_t F3(uint32_t X, uint32_t Y, uint32_t Z)
{
	return (X & Y) | (X & Z) | (Y & Z);
}
static uint32_t F4(uint32_t X, uint32_t Y, uint32_t Z)
{
	return X ^ Y ^ Z;
}

/* 循环向左移动offset个比特位 */
static uint32_t MoveLeft(uint32_t X, uint8_t offset)
{
	uint32_t res = (X << offset) | (X >> (32 - offset));
	return res;
}

#define ASSERT_RETURN_INT(x, d) if(!(x)) { return d; }

int sha1(unsigned char *out, const unsigned char* in, const int inlen)
{
	ASSERT_RETURN_INT(out && in && (inlen >= 0), 1);
	int i = 0, j = 0, t = 0;

	// step 1: 字节填充(Append Padding Bytes)
	// 数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数
	int iX = inlen / HASH_BLOCK_SIZE;
	int iY = inlen % HASH_BLOCK_SIZE;
	iX = (iY < HASH_LEN_OFFSET) ? iX : (iX + 1);

	int iLen = (iX + 1) * HASH_BLOCK_SIZE;
	unsigned char* X = malloc(iLen);
	memcpy(X, in, inlen);
	// 先补上1个1比特+7个0比特
	X[inlen] = 0x80;
	// 再补上(k-7)个0比特
	for (i = inlen + 1; i < (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET); i++)
	{
		X[i] = 0;
	}

	// step 2: 追加长度信息(Append Length)
	uint8_t *pLen = (uint64_t*)(X + (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET));
	uint64_t iTempLen = inlen << 3;
	uint8_t *pTempLen = &iTempLen;
	pLen[0] = pTempLen[7]; pLen[1] = pTempLen[6]; pLen[2] = pTempLen[5];  pLen[3] = pTempLen[4];
	pLen[4] = pTempLen[3]; pLen[5] = pTempLen[2]; pLen[6] = pTempLen[1];  pLen[7] = pTempLen[0];

	// Step 3. 初始化MD Buffer(Initialize MD Buffer)
	uint32_t H0 = 0x67452301;	// 0x01, 0x23, 0x45, 0x67
	uint32_t H1 = 0xEFCDAB89;	// 0x89, 0xAB, 0xCD, 0xEF
	uint32_t H2 = 0x98BADCFE;	// 0xFE, 0xDC, 0xBA, 0x98
	uint32_t H3 = 0x10325476;	// 0x76, 0x54, 0x32, 0x10
	uint32_t H4 = 0xC3D2E1F0;	// 0xF0, 0xE1, 0xD2, 0xC3

	uint32_t M[HASH_BLOCK_SIZE / 4] = { 0 };
	uint32_t W[HASH_ROUND_NUM] = { 0 };

	// step 4: 处理消息块(Process Message in 64-Byte Blocks)
	for (i = 0; i < iLen / HASH_BLOCK_SIZE; i++)
	{
		/* Copy block i into X. */
		for (j = 0; j < HASH_BLOCK_SIZE; j = j + 4)
		{
			uint64_t k = i * HASH_BLOCK_SIZE + j;
			M[j / 4] = (X[k] << 24) | (X[k + 1] << 16) | (X[k + 2] << 8) | X[k + 3];
		}

		/*	a. Divide M(i) into 16 words W(0), W(1), ..., W(15), where W(0) is the left - most word. */
		for (t = 0; t <= 15; t++)
		{
			W[t] = M[t];
		}

		/*  b. For t = 16 to 79 let
			W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)). */
		for (t = 16; t <= 79; t++)
		{
			W[t] = MoveLeft(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
		}

		/*	c. Let A = H0, B = H1, C = H2, D = H3, E = H4. */
		uint32_t A = H0;
		uint32_t B = H1;
		uint32_t C = H2;
		uint32_t D = H3;
		uint32_t E = H4;

		/*	d. For t = 0 to 79 do
			TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);
			E = D;  D = C;  C = S^30(B);  B = A; A = TEMP; */
		for (t = 0; t <= 19; t++)
		{
			uint32_t temp = MoveLeft(A, 5) + F1(B, C, D) + E + W[t] + K[0];
			E = D;
			D = C;
			C = MoveLeft(B, 30);
			B = A;
			A = temp;
		}
		for (t = 20; t <= 39; t++)
		{
			uint32_t temp = MoveLeft(A, 5) + F2(B, C, D) + E + W[t] + K[1];
			E = D;
			D = C;
			C = MoveLeft(B, 30);
			B = A;
			A = temp;
		}
		for (t = 40; t <= 59; t++)
		{
			uint32_t temp = MoveLeft(A, 5) + F3(B, C, D) + E + W[t] + K[2];
			E = D;
			D = C;
			C = MoveLeft(B, 30);
			B = A;
			A = temp;
		}
		for (t = 60; t <= 79; t++)
		{
			uint32_t temp = MoveLeft(A, 5) + F4(B, C, D) + E + W[t] + K[3];
			E = D;
			D = C;
			C = MoveLeft(B, 30);
			B = A;
			A = temp;
		}

		/*	e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E. */
		H0 = H0 + A;
		H1 = H1 + B;
		H2 = H2 + C;
		H3 = H3 + D;
		H4 = H4 + E;
	}

	// step 5: 输出ABCD
	uint32_t* pOut = (uint8_t*)out;
	pOut[0] = __bswap_32(H0);
	pOut[1] = __bswap_32(H1);
	pOut[2] = __bswap_32(H2);
	pOut[3] = __bswap_32(H3);
	pOut[4] = __bswap_32(H4);
	free(X);

	return 0;
}

int main()
{
	unsigned char digest[20] = { 0 };

	sha1(digest, "Hello World!", strlen("Hello World!"));

	return 0;
}


这篇关于sha1算法实现原理深剖的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程