POJ1458 Common Subsequence
2022/8/11 23:25:29
本文主要是介绍POJ1458 Common Subsequence,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
题目链接
题目
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
Southeastern Europe 2003
题解
知识点:线性dp。
这题属于子序列系列题,这类题的特征是某个序列要符合某个特性,这里是两个序列相同。
可以设 \(dp[i][j]\) 为考虑到一串的第 \(i\) 个字母,二串的第 \(j\) 个字母的最长公共子序列。显然有转移方程:
\[dp[i][j] = \begin{cases} dp[i-1][j-1] + 1 &,s1[i] = s2[j]\\ \max (dp[i-1][j],dp[i][j-1]) &, s1[i] \neq s2[j] \end{cases} \]时间复杂度 \(O(|s_1||s_2|)\)
空间复杂度 \(O(|s_1||s_2|)\)
代码
#include <iostream> #include <cstring> #include <algorithm> using namespace std; char s1[1007], s2[1007]; int dp[1007][1007]; int main() { std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); while (cin >> s1 + 1 >> s2 + 1) { int len1 = strlen(s1 + 1); int len2 = strlen(s2 + 1); for (int i = 1;i <= len1;i++) { for (int j = 1;j <= len2;j++) { if (s1[i] == s2[j]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); } } cout << dp[len1][len2] << '\n'; } return 0; }
这篇关于POJ1458 Common Subsequence的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享
- 2024-11-22ansible 的archive 参数是什么意思?-icode9专业技术文章分享
- 2024-11-22ansible 中怎么只用archive 排除某个目录?-icode9专业技术文章分享
- 2024-11-22exclude_path参数是什么作用?-icode9专业技术文章分享
- 2024-11-22微信开放平台第三方平台什么时候调用数据预拉取和数据周期性更新接口?-icode9专业技术文章分享
- 2024-11-22uniapp 实现聊天消息会话的列表功能怎么实现?-icode9专业技术文章分享
- 2024-11-22在Mac系统上将图片中的文字提取出来有哪些方法?-icode9专业技术文章分享
- 2024-11-22excel 表格中怎么固定一行显示不滚动?-icode9专业技术文章分享
- 2024-11-22怎么将 -rwxr-xr-x 修改为 drwxr-xr-x?-icode9专业技术文章分享
- 2024-11-22在Excel中怎么将小数向上取整到最接近的整数?-icode9专业技术文章分享