modint自动取模
2022/8/30 6:23:13
本文主要是介绍modint自动取模,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
modint
自动取模类模板
简单的一种
constexpr int mod = 1e9 + 7; template <typename T> T inv(T a, T m) { T u = 0, v = 1; while (a != 0) { T t = m / a; swap(a, m -= t * a); swap(u -= t * v, v); } assert(m == 1); return u; } struct modint { int n; modint() : n(0) {} modint(long long m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0) m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod) a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0) a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = (static_cast<long long>(a.n) * b.n) % mod; return a; } modint operator/=(modint& a, modint b) { return a *= modint(inv(b.n, mod)); } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator/(modint a, modint b) { return a /= b; } template <typename T> modint qpow(const modint& a, const T& b) { assert(b >= 0); modint x = a, res = 1; T p = b; while (p > 0) { if (p & 1) res *= x; x *= x; p >>= 1; } return res; } struct Fact { vector<modint> fact, factinv; int n; Fact(int _n) : n(_n), fact(_n + 1), factinv(_n + 1) { fact[0] = modint(1); for (int i = 0; i < n - 1; i++) fact[i + 1] = fact[i] * modint(i + 1); factinv[n - 1] = modint(1) / fact[n - 1]; for (int i = n - 2; i >= 0; i--) factinv[i] = factinv[i + 1] * modint(i + 1); } modint C(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; return fact[n] * factinv[k] * factinv[n - k]; } modint A(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; return fact[n] * factinv[n - k]; } };
By tourist
template <typename T> T inv(T a, T m) { T u = 0, v = 1; while (a != 0) { T t = m / a; swap(a, m-= t * a); swap(u-= t * v, v); } assert(m == 1); return u; } template <typename T> class Modular { public: using Type = typename decay<decltype(T::value)>::type; constexpr Modular() : value() {} template <typename U> Modular(const U& x) { value = normalize(x); } template <typename U> static Type normalize(const U& x) { Type v = static_cast<Type>((-mod() <= x && x < mod()) ? x : x % mod()); if (v < 0) v += mod(); return v; } const Type& operator()() const { return value; } template <typename U> explicit operator U() const { return static_cast<U>(value); } constexpr static Type mod() { return T::value; } Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; } Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; } template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); } template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); } Modular& operator++() { return *this += 1; } Modular& operator--() { return *this -= 1; } Modular operator++(int) { Modular result(*this); *this += 1; return result; } Modular operator--(int) { Modular result(*this); *this -= 1; return result; } Modular operator-() const { return Modular(-value); } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) { #ifdef _WIN32 uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value); uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m; asm( "divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(mod())); value = m; #else value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value)); #endif return *this; } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) { long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod()); value = normalize(value * rhs.value - q * mod()); return *this; } template <typename U = T> typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(value * rhs.value); return *this; } Modular& operator/=(const Modular& other) { return *this *= Modular(inv(other.value, mod())); } friend const Type& abs(const Modular& x) { return x.value; } template <typename U> friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs); template <typename U> friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs); template <typename V, typename U> friend V& operator>>(V& stream, Modular<U>& number); private: Type value; }; template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; } template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); } template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; } template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; } template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> qpow(const Modular<T>& a, const U& b) { assert(b >= 0); Modular<T> x = a, res = 1; U p = b; while (p > 0) { if (p & 1) res *= x; x *= x; p >>= 1; } return res; } template <typename T> bool IsZero(const Modular<T>& number) { return number() == 0; } template <typename T> string to_string(const Modular<T>& number) { return to_string(number()); } // U == std::ostream? but done this way because of fastoutput template <typename U, typename T> U& operator<<(U& stream, const Modular<T>& number) { return stream << number(); } // U == std::istream? but done this way because of fastinput template <typename U, typename T> U& operator>>(U& stream, Modular<T>& number) { typename common_type<typename Modular<T>::Type, long long>::type x; stream >> x; number.value = Modular<T>::normalize(x); return stream; } // using ModType = int; // struct VarMod { static ModType value; }; // ModType VarMod::value; // ModType& md = VarMod::value;//(can change) // using Mint = Modular<VarMod>; constexpr int md = (int)1e9 + 7; //模数 using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>; struct Fact { std::vector<Mint> fact, factinv; int n; Fact(int _n) : n(_n), fact(_n + 1), factinv(_n + 1) { fact[0] = Mint(1); for (int i = 0; i < n - 1; i++) fact[i + 1] = fact[i] * Mint(i + 1); factinv[n - 1] = Mint(1) / fact[n - 1]; for (int i = n - 2; i >= 0; i--) factinv[i] = factinv[i + 1] * Mint(i + 1); } Mint C(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; return fact[n] * factinv[k] * factinv[n - k]; } Mint A(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; return fact[n] * factinv[n - k]; } };
这篇关于modint自动取模的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-26网络攻防资料入门教程
- 2024-12-26SQL注入资料详解:入门必读教程
- 2024-12-26初学者指南:数据库服务漏洞项目实战
- 2024-12-26网络安全项目实战:新手入门指南
- 2024-12-26网络攻防项目实战入门教程
- 2024-12-26信息安全项目实战:从入门到初步应用
- 2024-12-26SQL注入项目实战:初学者指南
- 2024-12-26Web安全项目实战:新手入门教程
- 2024-12-26Web攻防项目实战:新手入门教程
- 2024-12-26Web漏洞攻防项目实战入门教程