windows下使用pytorch进行单机多卡分布式训练
2023/4/2 18:22:02
本文主要是介绍windows下使用pytorch进行单机多卡分布式训练,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
现在有四张卡,但是部署在windows10系统上,想尝试下在windows上使用单机多卡进行分布式训练,网上找了一圈硬是没找到相关的文章。以下是踩坑过程。
首先,pytorch的版本必须是大于1.7,这里使用的环境是:
pytorch==1.12+cu11.6 四张4090显卡 python==3.7.6
使用nn.DataParallel进行分布式训练
这一种方式较为简单:
首先我们要定义好使用的GPU的编号,GPU按顺序依次为0,1,2,3。gpu_ids可以通过命令行的形式传入:
gpu_ids = args.gpu_ids.split(',') gpu_ids = [int(i) for i in gpu_ids] torch.cuda.set_device('cuda:{}'.format(gpu_ids[0]))
创建模型后用nn.DataParallel进行处理,
model.cuda() r_model = nn.DataParallel(model, device_ids=gpu_ids, output_device=gpu_ids[0])
对,没错,只需要这么两步就行了。需要注意的是保存模型后进行加载时,需要先用nn.DataParallel进行处理,再加载权重,不然参数名没对齐会报错。
checkpoint = torch.load(checkpoint_path) model.cuda() r_model = nn.DataParallel(model, device_ids=gpu_ids, output_device=gpu_ids[0]) r_model.load_state_dict(checkpoint['state_dict'])
如果不使用分布式加载模型,你需要对权重进行映射:
new_start_dict = {} for k, v in checkpoint['state_dict'].items(): new_start_dict["module." + k] = v model.load_state_dict(new_start_dict)
使用Distributed进行分布式训练
首先了解一下概念:
node:主机数,单机多卡就一个主机,也就是1。
rank:当前进程的序号,用于进程之间的通讯,rank=0的主机为master节点。
local_rank:当前进程对应的GPU编号。
world_size:总的进程数。
在windows中,我们需要在py文件里面使用:
import os os.environ["CUDA_VISIBLE_DEVICES]='0,1,3'
来指定使用的显卡。
假设现在我们使用上面的三张显卡,运行时显卡会重新按照0-N进行编号,有:
[38664] rank = 1, world_size = 3, n = 1, device_ids = [1] [76032] rank = 0, world_size = 3, n = 1, device_ids = [0] [23208] rank = 2, world_size = 3, n = 1, device_ids = [2]
也就是进程0使用第1张显卡,进行1使用第2张显卡,进程2使用第三张显卡。
有了上述的基本知识,再看看具体的实现。
使用torch.distributed.launch启动
使用torch.distributed.launch启动时,我们必须要在args里面添加一个local_rank参数,也就是:
parser.add_argument("--local_rank", type=int, default=0)
1、初始化:
import torch.distributed as dist env_dict = { key: os.environ[key] for key in ("MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE") } current_work_dir = os.getcwd() init_method = f"file:///{os.path.join(current_work_dir, 'ddp_example')}" dist.init_process_group(backend="gloo", init_method=init_method, rank=int(env_dict["RANK"]), world_size=int(env_dict["WORLD_SIZE"]))
这里需要重点注意,这种启动方式在环境变量中会存在RANK和WORLD_SIZE,我们可以拿来用。backend必须指定为gloo,init_method必须是file:///,而且每次运行完一次,下一次再运行前都必须删除生成的ddp_example,不然会一直卡住。
2、构建模型并封装
local_rank会自己绑定值,不再是我们--local_rank指定的。
model.cuda(args.local_rank) r_model = torch.nn.parallel.DistributedDataParallel(model, device_ids=device_ids)
3、构建数据集加载器并封装
train_dataset = dataset(file_path='data/{}/{}'.format(args.data_name, train_file)) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_loader = DataLoader(train_dataset, batch_size=args.train_batch_size, collate_fn=collate.collate_fn, num_workers=4, sampler=train_sampler)
4、计算损失函数
我们把每一个GPU上的loss进行汇聚后计算。
def loss_reduce(self, loss): rt = loss.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= self.args.local_world_size return rt loss = self.criterion(outputs, labels) torch.distributed.barrier() loss = self.loss_reduce(loss)
注意打印相关信息和保存模型的时候我们通常只需要在local_rank=0时打印。同时,在需要将张量转换到GPU上时,我们需要指定使用的GPU,通过local_rank指定就行,即data.cuda(args.local_rank),保证数据在对应的GPU上进行处理。
5、启动
在windows下需要把换行符去掉,且只变为一行。
python -m torch.distributed.launch \ --nnode=1 \ --node_rank=0 \ --nproc_per_node=3 \ main_distributed.py \ --local_world_size=3 \ --bert_dir="../model_hub/chinese-bert-wwm-ext/" \ --data_dir="./data/cnews/" \ --data_name="cnews" \ --log_dir="./logs/" \ --output_dir="./checkpoints/" \ --num_tags=10 \ --seed=123 \ --max_seq_len=512 \ --lr=3e-5 \ --train_batch_size=64 \ --train_epochs=1 \ --eval_batch_size=64 \ --do_train \ --do_predict \ --do_test
nproc_per_node、local_world_size和GPU的数目保持一致。
使用torch.multiprocessing启动
使用torch.multiprocessing启动和使用torch.distributed.launch启动大体上是差不多的,有一些地方需要注意。
mp.spawn(main_worker, nprocs=args.nprocs, args=(args,))
main_worker是我们的主运行函数,dist.init_process_group要放在这里面,而且第一个参数必须为local_rank。即main_worker(local_rank, args)
nprocs是进程数,也就是使用的GPU数目。
args按顺序传入main_worker真正使用的参数。
其余的就差不多。
启动指令:
python main_mp_distributed.py \ --local_world_size=4 \ --bert_dir="../model_hub/chinese-bert-wwm-ext/" \ --data_dir="./data/cnews/" \ --data_name="cnews" \ --log_dir="./logs/" \ --output_dir="./checkpoints/" \ --num_tags=10 \ --seed=123 \ --max_seq_len=512 \ --lr=3e-5 \ --train_batch_size=64 \ --train_epochs=1 \ --eval_batch_size=64 \ --do_train \ --do_predict \ --do_test
最后需要说明的,假设我们设置的batch_size=64,那么实际上的batch_size = int(batch_size / GPU数目)。
附上完整的基于bert的中文文本分类单机多卡训练代码:https://github.com/taishan1994/pytorch_bert_chinese_text_classification
参考
https://github.com/tczhangzhi/pytorch-distributed
https://murphypei.github.io/blog/2020/09/pytorch-distributed
https://pytorch.org/docs/master/distributed.html?highlight=all_gather#torch.distributed.all_gather
https://github.com/lesliejackson/PyTorch-Distributed-Training
https://github.com/pytorch/examples/blob/ddp-tutorial-code/distributed/ddp/example.py
996黄金一代:[原创][深度][PyTorch] DDP系列第一篇:入门教程
「新生手册」:PyTorch分布式训练 - 知乎 (zhihu.com)
这篇关于windows下使用pytorch进行单机多卡分布式训练的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-21Svg Sprite Icon教程:轻松入门与应用指南
- 2024-12-20Excel数据导出实战:新手必学的简单教程
- 2024-12-20RBAC的权限实战:新手入门教程
- 2024-12-20Svg Sprite Icon实战:从入门到上手的全面指南
- 2024-12-20LCD1602显示模块详解
- 2024-12-20利用Gemini构建处理各种PDF文档的Document AI管道
- 2024-12-20在 uni-app 中怎么实现 WebSocket 的连接、消息发送和接收?-icode9专业技术文章分享
- 2024-12-20indices.breaker.request.limit 默认是多少?-icode9专业技术文章分享
- 2024-12-20怎么查看 Elasticsearch 的内存占用情况?-icode9专业技术文章分享
- 2024-12-20查看es 占用内存的进程有哪些方法?-icode9专业技术文章分享