NC51101 Lost Cows
2023/5/3 18:22:02
本文主要是介绍NC51101 Lost Cows,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
题目链接
题目
题目描述
\(N (2 \leq N \leq 8,000)\) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.
Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.
Given this data, tell FJ the exact ordering of the cows.
输入描述
- Line 1: A single integer, N
- Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.
输出描述
- Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.
示例1
输入
5 1 2 1 0
输出
2 4 5 3 1
题解
知识点:树状数组,倍增,枚举。
首先需要一个事实,对于一个排列,要确定其中某个位置的数具体是多少,可以通过整个排列比它小的数字有多少个(或者比它大的数字有多少个)确定。现在这道题确定了各个位置的数的左边比它小的数的个数,我们只需要知道在它右边有多少个数比它小就行,因此我们从右往左枚举,依次确定数字。
首先用树状数组维护右侧出现的数字,随后需要二分一个 \(x\) 通过比较 \(x - cnt_{<x} -1 < a_i\) 得知 \(x\) 是否小了还是大了,从而找到第一个 \(x - cnt_{<x} -1 = a_i\) 的点。注意,条件不能为 \(x - cnt_{<x} -1 \leq a_i\) , 因为可能会出现连续一段刚好等于 \(a_i\) 的点,而我们只需要第一个的下标即可,如果用这个条件,我们得到的是最后一个下标。
当然,这个二分条件其实还可以更简单,我们反过来记录右侧没出现的数字,那么 \(cnt_{<x}\) 直接代表左侧比 \(x\) 小的数字个数,那么条件为 \(cnt_{<x} < a_i\) 即可。
另外,二分套树状数组查询的复杂度是对数平方的,并不是最优的。我们可以直接使用树状数组本身的倍增性质进行二分,是最优的对数复杂度。我封装了两个常用的函数,大于等于 lower_bound
和大于 upper_bound
。
这道题查询 \(cnt_{<x} = a_i\) 的第一个点,我们 lower_bound
查询即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> class Fenwick { int n; vector<T> node; public: Fenwick(int _n = 0) { init(_n); } void init(int _n) { n = _n; node.assign(n + 1, T()); } void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; } T query(int x) { T ans = T(); for (int i = x;i >= 1;i -= i & -i) ans += node[i]; return ans; } T query(int l, int r) { return query(r) - query(l - 1); } int lower_bound(T val) { int pos = 0; for (int i = 1 << __lg(n); i; i >>= 1) { if (pos + i <= n && node[pos + i] < val) { pos += i; val -= node[pos]; } } return pos + 1; } int upper_bound(T val) { int pos = 0; for (int i = 1 << __lg(n); i; i >>= 1) { if (pos + i <= n && node[pos + i] <= val) { pos += i; val -= node[pos]; } } return pos + 1; } }; int a[8007]; int main() { std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); int n; cin >> n; for (int i = 2;i <= n;i++) cin >> a[i]; Fenwick<int> fw(n); for (int i = 1;i <= n;i++) fw.update(i, 1); vector<int> ans(n + 1); for (int i = n;i >= 1;i--) { ans[i] = fw.lower_bound(a[i] + 1); fw.update(ans[i], -1); } for (int i = 1;i <= n;i++) cout << ans[i] << '\n'; return 0; }
这篇关于NC51101 Lost Cows的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15在使用平台私钥进行解密时提示 "私钥解密失败" 错误信息是什么原因?-icode9专业技术文章分享
- 2024-11-15Layui框架有哪些方式引入?-icode9专业技术文章分享
- 2024-11-15Layui框架中有哪些减少对全局环境的污染方法?-icode9专业技术文章分享
- 2024-11-15laydate怎么关闭自动的日期格式校验功能?-icode9专业技术文章分享
- 2024-11-15laydate怎么取消初始日期校验?-icode9专业技术文章分享
- 2024-11-15SendGrid 的邮件发送时,怎么设置回复邮箱?-icode9专业技术文章分享
- 2024-11-15使用 SendGrid API 发送邮件后获取到唯一的请求 ID?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 tags标签最多有多少个?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 怎么批量发送给多个人?-icode9专业技术文章分享
- 2024-11-15如何搭建web开发环境并实现 web项目在浏览器中访问?-icode9专业技术文章分享