Logstash同步MySQL一对多关联表到Elasticsearch父子文档
2023/5/13 23:22:15
本文主要是介绍Logstash同步MySQL一对多关联表到Elasticsearch父子文档,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
前言:
目前大部分业务开发中,ElasticSearch主要还是用来做搜索。而支撑搜索功能的数据结构比较单一,不会有数据嵌套或者多种关联之类的。尽管没有,但是有些小众需求可能还会有一对多查询的场景。为了实现和MySQL的Join类似的查询方式,以下以ES的父子文档方式储存,并详细演示Logstash如何将MySQL的多张有关联的表同步到ES的父子文档。
手动演示:
以下以restful方式创建父子文档索引,并以简单的方式查询类似join的数据返回。下面所有演示的索引名称都为 "my_join_index"。
1. 创建父子关联索引
PUT my_join_index { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "question": "answer" } } } } }
2. 创建父文档
PUT my_join_index/_doc/1?refresh { "text": "This is a question", "my_join_field": "question" } PUT my_join_index/_doc/2?refresh { "text": "This is another question", "my_join_field": "question"}
3. 创建子文档
PUT my_join_index/_doc/3?routing=1&refresh { "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } } PUT my_join_index/_doc/4?routing=1&refresh { "text": "This is another answer2", "my_join_field": { "name": "answer", "parent": "2" } }
4. 全局检索
GET my_join_index/_search { "query": { "match_all": {} }, "sort": ["_id"] }
5. 根据父文档查找子文档
GET my_join_index/_search { "query": { "has_parent" : { "parent_type" : "question", "query" : { "match" : { "text" : "This is" } } } } }
6. 根据子文档查找父文档
GET my_join_index/_search {"query": { "has_child" : { "type" : "answer", "query" : { "match" : { "text" : "This is question" } } } } }
7. Join聚合
GET my_join_index/_search { "query": { "parent_id": { "type": "answer", "id": "1" } }, "aggs": { "parents": { "terms": { "field": "my_join_field#question", "size": 10 } } }, "script_fields": { "parent": { "script": { "source": "doc['my_join_field#question']" } } } }
8. 单条联合查询, 可以是一条父文档对应多个子文档
GET my_join_index/_search { "query": { "bool": { "must": [ { "match": { "title": "历史圈" } }, { "has_child": { "type": "answer", "query": { "match": { "text":"是的" } }, "inner_hits":{} } } ] } } }
Logstash同步:
以下以文章分类表和文章表为例,二者系一对多的关系。同步文档时,文章分类作为父文档,文章作为子文档,关联字段为 “my_join_field”。
1. 创建有父子文档的索引
PUT hhyp_article { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "article_cate": "article" } } } } }
2. 配置同步代码
input { stdin { } jdbc { # mysql 数据库链接,shop为数据库名 jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/rebuild?characterEncoding=UTF-8&useSSL=false" # 用户名和密码 jdbc_user => "root" jdbc_password => "root" # 驱动 jdbc_driver_library => "E:/2setsoft/1dev/logstash-7.8.0/mysqletc/mysql-connector-java-5.1.7-bin.jar" # 驱动类名 jdbc_driver_class => "com.mysql.jdbc.Driver" jdbc_paging_enabled => "true" jdbc_page_size => "50000" parameters => {"number" => "200"} statement => "SELECT * FROM `hhyp_article` WHERE delete_time = 0" # 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false); lowercase_column_names => false # Value can be any of: fatal,error,warn,info,debug,默认info; sql_log_level => warn # 设置监听间隔 各字段含义(由左至右)分、时、天、月、年,全部为*默认含义为每分钟都更新 schedule => "* * * * *" # 索引类型 type => "article" } jdbc { # mysql 数据库链接,shop为数据库名 jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/rebuild?characterEncoding=UTF-8&useSSL=false" # 用户名和密码 jdbc_user => "root" jdbc_password => "root" # 驱动 jdbc_driver_library => "E:/2setsoft/1dev/logstash-7.8.0/mysqletc/mysql-connector-java-5.1.7-bin.jar" # 驱动类名 jdbc_driver_class => "com.mysql.jdbc.Driver" jdbc_paging_enabled => "true" jdbc_page_size => "50000" parameters => {"number" => "200"} statement => "SELECT * FROM `hhyp_article_cate` WHERE delete_time = 0" # 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false); lowercase_column_names => false # Value can be any of: fatal,error,warn,info,debug,默认info; sql_log_level => warn # 设置监听间隔 各字段含义(由左至右)分、时、天、月、年,全部为*默认含义为每分钟都更新 schedule => "* * * * *" # 索引类型 type => "article_cate" } } filter { if [type]=="article_cate" { mutate { add_field => { "my_join_field" => "article_cate" } } } if [type]=="article" { mutate { add_field => {"[my_join_field][name]" => "article"} #catalog_id 子表的父id add_field => {"[my_join_field][parent]" => "%{cid}"} } } } output { if[type] == "article_cate" { elasticsearch { hosts => "localhost:9200" index => "hhyp_article" document_type => "_doc" document_id => "%{id}" } } if[type] == "article" { elasticsearch { hosts => "localhost:9200" index => "hhyp_article" document_type => "_doc" document_id => "%{id}" routing => "%{cid}" } } stdout { codec => json_lines } }
3. 运行命令开始同步
bin\logstash -f mysql\mysql.conf
4. 通过搜索父文档标题查询子文档数据
这篇关于Logstash同步MySQL一对多关联表到Elasticsearch父子文档的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-04部署MySQL集群项目实战:新手入门教程
- 2024-11-04如何部署MySQL集群资料:新手入门指南
- 2024-11-02MySQL集群项目实战:新手入门指南
- 2024-11-02初学者指南:部署MySQL集群资料
- 2024-11-01部署MySQL集群教程:新手入门指南
- 2024-11-01如何部署MySQL集群:新手入门教程
- 2024-11-01部署MySQL集群学习:新手入门教程
- 2024-11-01部署MySQL集群入门:新手必读指南
- 2024-10-23BinLog入门:新手必读的MySQL二进制日志指南
- 2024-10-23Binlog入门:MySQL数据库的日志管理指南