「学习笔记」组合数学
2023/6/17 1:22:40
本文主要是介绍「学习笔记」组合数学,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
本文部分内容来自 \(\texttt{OI-Wiki}\)。
加法 & 乘法原理
加法原理
完成一个工程可以有 \(n\) 类办法,\(a_i(1 \le i \le n)\) 代表第 \(i\) 类方法的数目。那么完成这件事共有 \(S=a_1+a_2+\cdots +a_n\) 种不同的方法。
乘法原理
完成一个工程需要分 \(n\) 个步骤,\(a_i(1 \le i \le n)\) 代表第 \(i\) 个步骤的不同方法数目。那么完成这件事共有 \(S = a_1 \times a_2 \times \cdots \times a_n\) 种不同的方法。
排列与组合
排列
从 \(n\) 个不同元素中,任取 \(m\)(\(m\leq n\),\(m\) 与 \(n\) 均为自然数,下同)个元素按照一定的顺序排成一列,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的一个排列;从 \(n\) 个不同元素中取出 \(m(m\leq n)\) 个元素的所有排列的个数,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的排列数,用符号 \(\mathrm A_n^m\)(或者是 \(\mathrm P_n^m\))表示。
公式可以这样理解:\(n\) 个人选 \(m\) 个来排队 \((m \le n)\)。第一个位置可以选 \(n\) 个,第二位置可以选 \(n-1\) 个,以此类推,第 \(m\) 个(最后一个)可以选 \(n-m+1\) 个,得:
全排列:\(n\) 个人全部来排队,队长为 \(n\)。第一个位置可以选 \(n\) 个,第二位置可以选 \(n-1\) 个,以此类推得:
全排列是排列数的一个特殊情况。
组合
从 \(n\) 个不同元素中,任取 \(m \leq n\) 个元素组成一个集合(不是排列),叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的一个组合;从 \(n\) 个不同元素中取出 \(m \leq n\) 个元素的所有组合的个数,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的组合数,用符号 \(\dbinom{n}{m}\) 来表示,读作「\(n\) 选 \(m\)」。
组合数计算公式
如何理解上述公式?我们考虑 \(n\) 个人选 \(m\) 个出来(\(m \le n\)),不排队,不在乎顺序。如果在乎顺序那么就是
\(\mathrm A_n^m\),如果不在乎那么就要除掉重复,那么重复了多少?同样选出来的 \(m\) 个人,他们还要「全排」得 \(m!\)。
组合数也常用 \(\mathrm C_n^m\) 表示,即 \(\mathrm C_n^m=\dbinom{n}{m}\)。现在数学界普遍采用 \(\dbinom{n}{m}\) 的记号而非 \(\mathrm C_n^m\)。
特别地,规定当 \(m>n\) 时,\(\mathrm A_n^m=\dbinom{n}{m}=0\)。
关于组合数的一些公式
这个应该很好理解,不选和全选的方式就只有一种情况。
这个公式可以这么理解,你在 \(n\) 个人中选走了 \(m\) 个人,另一个人把剩下的 \(n - m\) 个人给选走了,对你来说,你选人的方案数为 \(\dbinom{n}{m}\),而另一个人选人的方案数与我们是一样的,换位思考一下,倘若主动权在另一个人手中,则他选人的方案数就是 \(\dbinom{n}{n - m}\),方案数不变,两者是等价的,故得 \(\dbinom{n}{m} = \dbinom{n}{n - m}\)。
这个公式可以这么理解,对于从 \(n\) 个人中选 \(m\) 个人的方案数,可以分第一个人选或不选两种方案,如果第一个人选,则方案数为 \(\dbinom{n - 1}{m - 1}\),如果第一个人不选,则方案数为 \(\dbinom{n - 1}{m}\),加起来即为 \(\dbinom{n}{m}\)。
由此,我们可以得到组合数的递推公式,下面是递推求组合数的代码。
for (int i = 0; i <= n; ++ i) { C[i][0] = 1; for (int j = 1; j <= i; ++ j) { C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } }
二项式定理
之前写了:「学习笔记」从二项式定理到多项式定理
抽屉原理(鸽巢原理)
现在有 \(n + 1\) 个东西,放到 \(n\) 个抽屉里面去,那么肯定有一个抽屉放了 \(2\) 个东西。
不信你自己试试看。
让我们扩展一下:现在要把 \(kn + 1\) 个东西放到 \(n\) 个抽屉中去,则至少有 \(1\) 个抽屉至少有 \(k + 1\) 个东西。
定理很简单,这类题目真正难的地方在于你要能看出它是抽屉原理,要知道谁是抽屉,谁是东西。
容斥原理
之前写了:「学习笔记」容斥原理
组合数的题目
有 \(n\) 个数,\(1, 2, 3, 4, 5, 6, \cdots\),选 \(m\) 个数,不计顺序,一个数可以选多次,求方案数。
假设选出的数是 \(a_1, a_2, a_3, \cdots, a_m\),这 \(m\) 个数不能重复,且递增选出。方案数:\(\dbinom{n}{m}\)
这是我们所知道的,\(a \le a_1 < a_2 < a_3 < \cdots < a_m \le n\\\)。
但是,对于这个题来说,情况是 \(1 \le b_1 \le b_2 \le b_3 \le \cdots \le b_m \le n\),因此我们需要转化过去,即
考虑构造,\(C_1 = b_1, C_2 = b_2 + 1, C_3 = b_3 + 2, \cdots , C_m = b_m + m - 1\)
那么,\(1 \le b_1 \le b_2 \le b_3 \le \cdots \le b_m \le n\) 就转化为了 \(1 \le C_1 < C_2 < C_3 \cdots < C_m \le n + m - 1\)
我们的方案数也呼之欲出了:\(\dbinom{n + m - 1}{m}\)。
这篇关于「学习笔记」组合数学的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南