TiDB 关联子查询及半连接的优化实践(下)
2024/11/28 23:03:11
本文主要是介绍TiDB 关联子查询及半连接的优化实践(下),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
关联子查询定义
关联子查询是指和外部查询有关联的子查询,即在子查询中使用了外部查询包含的列。在关联子查询中,对于外部查询返回的每一行数据,内部查询都要执行一次。
关联子查询具有以下几方面的特点:
信息流双向:关联子查询中的信息流是双向的。外部查询的每行数据传递一个值给子查询,子查询为每一行数据执行一次并返回记录,然后外部查询根据返回的记录做出决策。
灵活性:关联子查询可以使用关联列的灵活性,将 SQL 查询写成子查询的形式,这往往可以极大地简化 SQL 查询,并使 SQL 查询的语义更加方便理解。
执行挑战:为了计算关联结果的值(子查询的输出),关联子查询需要采用迭代(iterative)的执行方式。
以下是一个典型的关联子查询示例:
select * from t1 where t1.a < (select sum(t2.a) from t2 where t2.b = t1.b);
TiDB 关联子查询优化-“子查询去关联”
关联子查询每次子查询执行时都是要和它的外部查询结果绑定的,因此,如果上述语句中 t1.a 有一千万个值,那这个子查询就要被重复执行一千万次,因为 t2.b=t1.b 这个条件会随着 t1.a 值的不同而发生变化。
如果能将关联依赖解除的话,这个子查询就只需要被执行一次。默认情况下,TiDB 会尝试进行子查询去关联,以达到更高的执行效率。以下是 TiDB 中针对这条语句生成的执行计划,可以看出 TiDB 的优化器将语句的执行计划生成了一个 Hash Join 关联方式。模拟 2 个表的数据量为 1 千万行进行测试时,语句的实际执行耗时约为 14 秒。
mysql> explain select * from t1 where t1.a < (select sum(t2.a) from t2 where t2.b = t1.b); +--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+ | HashJoin_12 | 452412.14 | root | | inner join, equal:[eq(test.t1.b, test.t2.b)], other cond:lt(cast(test.t1.a, decimal(10,0) BINARY), Column#7) | | ├─TableReader_15(Build) | 452412.14 | root | | data:Selection_14 | | │ └─Selection_14 | 452412.14 | cop[tikv] | | not(isnull(test.t1.b)) | | │ └─TableFullScan_13 | 452865.00 | cop[tikv] | table:t1 | keep order:false, stats:pseudo | | └─HashAgg_21(Probe) | 472411.12 | root | | group by:test.t2.b, funcs:sum(Column#8)->Column#7, funcs:firstrow(test.t2.b)->test.t2.b | | └─TableReader_22 | 472411.12 | root | | data:HashAgg_16 | | └─HashAgg_16 | 472411.12 | cop[tikv] | | group by:test.t2.b, funcs:sum(test.t2.a)->Column#8 | | └─Selection_20 | 590513.90 | cop[tikv] | | not(isnull(test.t2.b)) | | └─TableFullScan_19 | 591105.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo | +--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+ rows in set (0.00 sec)
假如 TiDB 没有做子查询去关联的优化,实际执行情况又是怎么样呢?我们可以用 HINT
/*+ NO_DECORRELATE() */
来关闭子查询去关联,模拟未优化前的情况。此时得到如下的执行计划,其中 operator info 为
range: decided by [eq(test.t2.b, test.t1.b)]
的
IndexRangeScan_42
算子表示 TiDB 使用关联条件进行索引范围查询。同样的语句执行耗时超过 1 小时。
mysql> explain select * from t1 where t1.a < (select /*+ NO_DECORRELATE() */ sum(t2.a) from t2 where t2.b = t1.b); +------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+ | Projection_10 | 452865.00 | root | | test.t1.a, test.t1.b | | └─Apply_12 | 452865.00 | root | | CARTESIAN inner join, other cond:lt(cast(test.t1.a, decimal(10,0) BINARY), Column#7) | | ├─TableReader_14(Build) | 452865.00 | root | | data:TableFullScan_13 | | │ └─TableFullScan_13 | 452865.00 | cop[tikv] | table:t1 | keep order:false, stats:pseudo | | └─MaxOneRow_15(Probe) | 452865.00 | root | | | | └─StreamAgg_20 | 452865.00 | root | | funcs:sum(Column#14)->Column#7 | | └─Projection_45 | 857574.13 | root | | cast(test.t2.a, decimal(10,0) BINARY)->Column#14 | | └─IndexLookUp_44 | 857574.13 | root | | | | ├─IndexRangeScan_42(Build) | 857574.13 | cop[tikv] | table:t2, index:idx_t2(b) | range: decided by [eq(test.t2.b, test.t1.b)], keep order:false | | └─TableRowIDScan_43(Probe) | 857574.13 | cop[tikv] | table:t2 | keep order:false | +------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+ rows in set (0.01 sec)
何时需要关闭 “子查询去关联”
那么,是不是所有的关联子查询语句在关联依赖解除优化后性能都能有较大的提升呢?并不是这样。仍然用上面的示例来说,在外部的值比较少的情况下,不解除关联依赖反而可能对执行性能更有帮助。例如,如果 t3 表只有 100 条记录时,以下语句执行耗时仅 0.28 秒。
mysql> explain analyze select * from t3 where t3.a = (select /*+ NO_DECORRELATE() */ sum(t2.a) from t2 where t2.b = t3.b); +------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+ | Projection_11 | 100.00 | 0 | root | | time:277.9ms, loops:1, RU:117.173904, Concurrency:OFF | test.t3.a, test.t3.b | 3.55 KB | N/A | | └─Apply_13 | 100.00 | 0 | root | | time:277.9ms, loops:1, concurrency:OFF, cache:ON, cacheHitRatio:0.000% | inner join, equal:[eq(Column#8, Column#7)] | 900 Bytes | N/A | | ├─Projection_14(Build) | 100.00 | 100 | root | | time:1.61ms, loops:2, Concurrency:OFF | test.t3.a, test.t3.b, cast(test.t3.a, decimal(10,0) BINARY)->Column#8 | 1.82 KB | N/A | | │ └─TableReader_16 | 100.00 | 100 | root | | time:1.56ms, loops:2, cop_task: {num: 1, max: 1.36ms, proc_keys: 100, tot_proc: 333.9µs, tot_wait: 146.6µs, copr_cache_hit_ratio: 0.00, build_task_duration: 18.3µs, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:1, total_time:1.32ms}} | data:TableFullScan_15 | 1.86 KB | N/A | | │ └─TableFullScan_15 | 100.00 | 100 | cop[tikv] | table:t3 | tikv_task:{time:0s, loops:3}, scan_detail: {total_process_keys: 100, total_process_keys_size: 4400, total_keys: 101, get_snapshot_time: 46.4µs, rocksdb: {delete_skipped_count: 100, key_skipped_count: 200, block: {cache_hit_count: 4}}}, time_detail: {total_process_time: 333.9µs, total_wait_time: 146.6µs, tikv_wall_time: 730.8µs} | keep order:false, stats:pseudo | N/A | N/A | | └─MaxOneRow_17(Probe) | 100.00 | 100 | root | | time:265.2ms, loops:200 | | N/A | N/A | | └─StreamAgg_22 | 100.00 | 100 | root | | time:264.7ms, loops:200 | funcs:sum(Column#16)->Column#7 | 8.75 KB | N/A | | └─Projection_47 | 189.37 | 178 | root | | time:264ms, loops:176, Concurrency:OFF | cast(test.t2.a, decimal(10,0) BINARY)->Column#16 | 8.61 KB | N/A | | └─IndexLookUp_46 | 189.37 | 178 | root | | time:263.1ms, loops:176, index_task: {total_time: 78.3ms, fetch_handle: 77.5ms, build: 124.7µs, wait: 629µs}, table_task: {total_time: 144.4ms, num: 76, concurrency: 5}, next: {wait_index: 90ms, wait_table_lookup_build: 7.42ms, wait_table_lookup_resp: 136.1ms} | | 26.4 KB | N/A | | ├─IndexRangeScan_44(Build) | 189.37 | 178 | cop[tikv] | table:t2, index:idx_t2(b) | time:100ms, loops:252, cop_task: {num: 100, max: 1.38ms, min: 596.8µs, avg: 880.7µs, p95: 1.2ms, max_proc_keys: 8, p95_proc_keys: 5, tot_proc: 13.5ms, tot_wait: 9.62ms, copr_cache_hit_ratio: 0.00, build_task_duration: 2.07ms, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:100, total_time:85.1ms}}, tikv_task:{proc max:10ms, min:0s, avg: 300µs, p80:0s, p95:0s, iters:100, tasks:100}, scan_detail: {total_process_keys: 178, total_process_keys_size: 8188, total_keys: 278, get_snapshot_time: 3.17ms, rocksdb: {key_skipped_count: 178, block: {cache_hit_count: 465}}}, time_detail: {total_process_time: 13.5ms, total_wait_time: 9.62ms, total_kv_read_wall_time: 30ms, tikv_wall_time: 41.8ms} | range: decided by [eq(test.t2.b, test.t3.b)], keep order:false | N/A | N/A | | └─TableRowIDScan_45(Probe) | 189.37 | 178 | cop[tikv] | table:t2 | time:133.3ms, loops:152, cop_task: {num: 159, max: 9.38ms, min: 0s, avg: 753.7µs, p95: 1.13ms, max_proc_keys: 2, p95_proc_keys: 2, tot_proc: 18.6ms, tot_wait: 24.3ms, copr_cache_hit_ratio: 0.00, build_task_duration: 3.5ms, max_distsql_concurrency: 1, max_extra_concurrency: 1, store_batch_num: 34}, rpc_info:{Cop:{num_rpc:125, total_time:117ms}}, tikv_task:{proc max:10ms, min:0s, avg: 62.9µs, p80:0s, p95:0s, iters:159, tasks:159}, scan_detail: {total_process_keys: 178, total_process_keys_size: 8366, total_keys: 178, get_snapshot_time: 5.14ms, rocksdb: {block: {cache_hit_count: 798}}}, time_detail: {total_process_time: 18.6ms, total_wait_time: 24.3ms, total_kv_read_wall_time: 10ms, tikv_wall_time: 63.3ms} | keep order:false | N/A | N/A | +------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+ rows in set (0.28 sec)
而如果走 TiDB 默认的解除关联依赖时,耗时约 5 秒,且存在 OOM 的风险。
mysql> explain analyze select * from t3 where t3.a = (select sum(t2.a) from t2 where t2.b = t3.b); ERROR 8175 (HY000): Your query has been cancelled due to exceeding the allowed memory limit for a single SQL query. Please try narrowing your query scope or increase the tidb_mem_quota_query limit and try again.[conn=480325804] mysql> set tidb_mem_quota_query=10737418240; Query OK, 0 rows affected (0.00 sec) mysql> explain analyze select * from t3 where t3.a = (select sum(t2.a) from t2 where t2.b = t3.b); +--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+ | HashJoin_13 | 99.90 | 0 | root | | time:5.11s, loops:1, RU:11889.809066, build_hash_table:{total:1.48ms, fetch:1.36ms, build:122.2µs}, probe:{concurrency:5, total:25.5s, max:5.11s, probe:1.44s, fetch and wait:24.1s} | inner join, equal:[eq(test.t3.b, test.t2.b) eq(Column#8, Column#7)] | 46.0 KB | 0 Bytes | | ├─Projection_14(Build) | 99.90 | 100 | root | | time:1.26ms, loops:2, Concurrency:OFF | test.t3.a, test.t3.b, cast(test.t3.a, decimal(10,0) BINARY)->Column#8 | 2.52 KB | N/A | | │ └─TableReader_17 | 99.90 | 100 | root | | time:1.22ms, loops:2, cop_task: {num: 1, max: 1.38ms, proc_keys: 100, tot_proc: 353µs, tot_wait: 129.8µs, copr_cache_hit_ratio: 0.00, build_task_duration: 24.3µs, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:1, total_time:1.33ms}} | data:Selection_16 | 1.87 KB | N/A | | │ └─Selection_16 | 99.90 | 100 | cop[tikv] | | tikv_task:{time:0s, loops:3}, scan_detail: {total_process_keys: 100, total_process_keys_size: 4400, total_keys: 101, get_snapshot_time: 49.9µs, rocksdb: {delete_skipped_count: 100, key_skipped_count: 200, block: {cache_hit_count: 4}}}, time_detail: {total_process_time: 353µs, total_wait_time: 129.8µs, tikv_wall_time: 716.5µs} | not(isnull(test.t3.b)) | N/A | N/A | | │ └─TableFullScan_15 | 100.00 | 100 | cop[tikv] | table:t3 | tikv_task:{time:0s, loops:3} | keep order:false, stats:pseudo | N/A | N/A | | └─HashAgg_28(Probe) | 5280768.00 | 5343857 | root | | time:5.09s, loops:5222, partial_worker:{wall_time:2.494534938s, concurrency:5, task_num:285, tot_wait:215.654904ms, tot_exec:12.25579073s, tot_time:12.47193031s, max:2.494394166s, p95:2.494394166s}, final_worker:{wall_time:5.107395873s, concurrency:5, task_num:25, tot_wait:70.452µs, tot_exec:8.250691502s, tot_time:24.968242542s, max:5.107349993s, p95:5.107349993s} | group by:test.t2.b, funcs:sum(Column#11)->Column#7, funcs:firstrow(test.t2.b)->test.t2.b | 1.95 GB | 0 Bytes | | └─TableReader_29 | 5280768.00 | 9972967 | root | | time:225.2ms, loops:286, cop_task: {num: 285, max: 157.9ms, min: 470.7µs, avg: 55.1ms, p95: 83.7ms, max_proc_keys: 50176, p95_proc_keys: 50176, tot_proc: 13.8s, tot_wait: 51ms, copr_cache_hit_ratio: 0.04, build_task_duration: 41.8µs, max_distsql_concurrency: 11}, rpc_info:{Cop:{num_rpc:285, total_time:15.7s}} | data:HashAgg_21 | 25.2 MB | N/A | | └─HashAgg_21 | 5280768.00 | 9972967 | cop[tikv] | | tikv_task:{proc max:90ms, min:0s, avg: 46.7ms, p80:70ms, p95:70ms, iters:9769, tasks:285}, scan_detail: {total_process_keys: 9982592, total_process_keys_size: 469050751, total_keys: 9982867, get_snapshot_time: 19.6ms, rocksdb: {delete_skipped_count: 874, key_skipped_count: 9983466, block: {cache_hit_count: 18229}}}, time_detail: {total_process_time: 13.8s, total_suspend_time: 37.8ms, total_wait_time: 51ms, total_kv_read_wall_time: 9.13s, tikv_wall_time: 14.3s} | group by:test.t2.b, funcs:sum(test.t2.a)->Column#11 | N/A | N/A | | └─Selection_27 | 10000000.00 | 10000000 | cop[tikv] | | tikv_task:{proc max:70ms, min:0s, avg: 33.2ms, p80:50ms, p95:60ms, iters:9769, tasks:285} | not(isnull(test.t2.b)) | N/A | N/A | | └─TableFullScan_26 | 10000000.00 | 10000000 | cop[tikv] | table:t2 | tikv_task:{proc max:70ms, min:0s, avg: 32ms, p80:50ms, p95:60ms, iters:9769, tasks:285} | keep order:false | N/A | N/A | +--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+ rows in set (5.12 sec)
全局关闭 “子查询去关联”
/*+ NO_DECORRELATE() */
HINT 是一种针对具体 SQL 级别来关闭子查询去关联的方式,TiDB 也提供另外一种可以全局关闭的方式,它是直接将子查询去关联的规则加入到黑名单中。
关于优化规则黑名单的使用,可以参考 TiDB 官网文档 https://docs.pingcap.com/zh/tidb/v7.5/blocklist-control-plan。如果希望全局关闭子查询去关联的功能,需要执行以下命令,此后不需要使用
/*+ NO_DECORRELATE() */
这个 HINT 我们也同样可以获得具有子查询关联的执行计划。
insert into mysql.opt_rule_blacklist values("decorrelate"); admin reload opt_rule_blacklist;
TiDB 优化器针对 semi join 半连接默认会转换为 HashJoin 或 IndexJoin 以获得更好的性能,然而在某些特殊的场景下默认选择的 HashJoin 或 IndexJoin 可能仍然达不到最佳的性能。TiDB 提供的
SEMI_JOIN_REWRITE()
可以扩大选择范围,让优化器选择更好的执行方式,从而在性能上达到几倍的性能。
TiDB 默认针对关联子查询有自动解除关联依赖的优化操作,当涉及查询条件的数据量较大时,将重复执行无数次的子查询转化为只需执行一次,从而大大缩减了执行耗时。然而,如果满足查询条件的数据量很小的话,这种优化方式可能会造成相反的效果,此时我们则需要借助
NO_DECORRELATE()
来关闭 “子查询去关联” 的优化,也可以通过全局添加规则黑名单的方式实现全局控制。
这篇关于TiDB 关联子查询及半连接的优化实践(下)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-25初学者必备:订单系统资料详解与实操教程
- 2024-12-24内网穿透资料入门教程
- 2024-12-24微服务资料入门指南
- 2024-12-24微信支付系统资料入门教程
- 2024-12-24微信支付资料详解:新手入门指南
- 2024-12-24Hbase资料:新手入门教程
- 2024-12-24Java部署资料
- 2024-12-24Java订单系统资料:新手入门教程
- 2024-12-24Java分布式资料入门教程
- 2024-12-24Java监控系统资料详解与入门教程