Redis中LFU算法的深入分析

2019/6/30 22:28:23

本文主要是介绍Redis中LFU算法的深入分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

前言

Redis中的LRU算法文中说到,LRU有一个缺陷,在如下情况下:

~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|

会将数据D误认为将来最有可能被访问到的数据。

Redis作者曾想改进LRU算法,但发现Redis的LRU算法受制于随机采样数maxmemory_samples,在maxmemory_samples等于10的情况下已经很接近于理想的LRU算法性能,也就是说,LRU算法本身已经很难再进一步了。

于是,将思路回到原点,淘汰算法的本意是保留那些将来最有可能被再次访问的数据,而LRU算法只是预测最近被访问的数据将来最有可能被访问到。我们可以转变思路,采用一种LFU(Least Frequently Used)算法,也就是最频繁被访问的数据将来最有可能被访问到。在上面的情况中,根据访问频繁情况,可以确定保留优先级:B>A>C=D。

Redis中的LFU思路

在LFU算法中,可以为每个key维护一个计数器。每次key被访问的时候,计数器增大。计数器越大,可以约等于访问越频繁。

上述简单算法存在两个问题:

  • 在LRU算法中可以维护一个双向链表,然后简单的把被访问的节点移至链表开头,但在LFU中是不可行的,节点要严格按照计数器进行排序,新增节点或者更新节点位置时,时间复杂度可能达到O(N)。
  • 只是简单的增加计数器的方法并不完美。访问模式是会频繁变化的,一段时间内频繁访问的key一段时间之后可能会很少被访问到,只增加计数器并不能体现这种趋势。

第一个问题很好解决,可以借鉴LRU实现的经验,维护一个待淘汰key的pool。第二个问题的解决办法是,记录key最后一个被访问的时间,然后随着时间推移,降低计数器。

Redis对象的结构如下:

typedef struct redisObject {
  unsigned type:4;
  unsigned encoding:4;
  unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
              * LFU data (least significant 8 bits frequency
              * and most significant 16 bits access time). */
  int refcount;
  void *ptr;
} robj;

在LRU算法中,24 bits的lru是用来记录LRU time的,在LFU中也可以使用这个字段,不过是分成16 bits与8 bits使用:

      16 bits   8 bits
   +----------------+--------+
   + Last decr time | LOG_C |
   +----------------+--------+

高16 bits用来记录最近一次计数器降低的时间ldt,单位是分钟,低8 bits记录计数器数值counter。

LFU配置

Redis4.0之后为maxmemory_policy淘汰策略添加了两个LFU模式:

  • volatile-lfu:对有过期时间的key采用LFU淘汰算法
  • allkeys-lfu:对全部key采用LFU淘汰算法

还有2个配置可以调整LFU算法:

lfu-log-factor 10
lfu-decay-time 1

lfu-log-factor可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。

lfu-decay-time是一个以分钟为单位的数值,可以调整counter的减少速度

源码实现

在lookupKey中:

robj *lookupKey(redisDb *db, robj *key, int flags) {
  dictEntry *de = dictFind(db->dict,key->ptr);
  if (de) {
    robj *val = dictGetVal(de);

    /* Update the access time for the ageing algorithm.
     * Don't do it if we have a saving child, as this will trigger
     * a copy on write madness. */
    if (server.rdb_child_pid == -1 &&
      server.aof_child_pid == -1 &&
      !(flags & LOOKUP_NOTOUCH))
    {
      if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
        updateLFU(val);
      } else {
        val->lru = LRU_CLOCK();
      }
    }
    return val;
  } else {
    return NULL;
  }
}

当采用LFU策略时,updateLFU更新lru:

/* Update LFU when an object is accessed.
 * Firstly, decrement the counter if the decrement time is reached.
 * Then logarithmically increment the counter, and update the access time. */
void updateLFU(robj *val) {
  unsigned long counter = LFUDecrAndReturn(val);
  counter = LFULogIncr(counter);
  val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}

降低LFUDecrAndReturn

首先,LFUDecrAndReturn对counter进行减少操作:

/* If the object decrement time is reached decrement the LFU counter but
 * do not update LFU fields of the object, we update the access time
 * and counter in an explicit way when the object is really accessed.
 * And we will times halve the counter according to the times of
 * elapsed time than server.lfu_decay_time.
 * Return the object frequency counter.
 *
 * This function is used in order to scan the dataset for the best object
 * to fit: as we check for the candidate, we incrementally decrement the
 * counter of the scanned objects if needed. */
unsigned long LFUDecrAndReturn(robj *o) {
  unsigned long ldt = o->lru >> 8;
  unsigned long counter = o->lru & 255;
  unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
  if (num_periods)
    counter = (num_periods > counter) ? 0 : counter - num_periods;
  return counter;
}

函数首先取得高16 bits的最近降低时间ldt与低8 bits的计数器counter,然后根据配置的lfu_decay_time计算应该降低多少。

LFUTimeElapsed用来计算当前时间与ldt的差值:

/* Return the current time in minutes, just taking the least significant
 * 16 bits. The returned time is suitable to be stored as LDT (last decrement
 * time) for the LFU implementation. */
unsigned long LFUGetTimeInMinutes(void) {
  return (server.unixtime/60) & 65535;
}

/* Given an object last access time, compute the minimum number of minutes
 * that elapsed since the last access. Handle overflow (ldt greater than
 * the current 16 bits minutes time) considering the time as wrapping
 * exactly once. */
unsigned long LFUTimeElapsed(unsigned long ldt) {
  unsigned long now = LFUGetTimeInMinutes();
  if (now >= ldt) return now-ldt;
  return 65535-ldt+now;
}

具体是当前时间转化成分钟数后取低16 bits,然后计算与ldt的差值now-ldt。当ldt > now时,默认为过了一个周期(16 bits,最大65535),取值65535-ldt+now。

然后用差值与配置lfu_decay_time相除,LFUTimeElapsed(ldt) / server.lfu_decay_time,已过去n个lfu_decay_time,则将counter减少n,counter - num_periods。

增长LFULogIncr

增长函数LFULogIncr如下:

/* Logarithmically increment a counter. The greater is the current counter value
 * the less likely is that it gets really implemented. Saturate it at 255. */
uint8_t LFULogIncr(uint8_t counter) {
  if (counter == 255) return 255;
  double r = (double)rand()/RAND_MAX;
  double baseval = counter - LFU_INIT_VAL;
  if (baseval < 0) baseval = 0;
  double p = 1.0/(baseval*server.lfu_log_factor+1);
  if (r < p) counter++;
  return counter;
}

counter并不是简单的访问一次就+1,而是采用了一个0-1之间的p因子控制增长。counter最大值为255。取一个0-1之间的随机数r与p比较,当r<p时,才增加counter,这和比特币中控制产出的策略类似。p取决于当前counter值与lfu_log_factor因子,counter值与lfu_log_factor因子越大,p越小,r<p的概率也越小,counter增长的概率也就越小。增长情况如下:

+--------+------------+------------+------------+------------+------------+
| factor | 100 hits   | 1000 hits  | 100K hits  | 1M hits    | 10M hits   |
+--------+------------+------------+------------+------------+------------+
| 0      | 104        | 255        | 255        | 255        | 255        |
+--------+------------+------------+------------+------------+------------+
| 1      | 18         | 49         | 255        | 255        | 255        |
+--------+------------+------------+------------+------------+------------+
| 10     | 10         | 18         | 142        | 255        | 255        |
+--------+------------+------------+------------+------------+------------+
| 100    | 8          | 11         | 49         | 143        | 255        |
+--------+------------+------------+------------+------------+------------+

可见counter增长与访问次数呈现对数增长的趋势,随着访问次数越来越大,counter增长的越来越慢。

新生key策略

另外一个问题是,当创建新对象的时候,对象的counter如果为0,很容易就会被淘汰掉,还需要为新生key设置一个初始counter,createObject:

robj *createObject(int type, void *ptr) {
  robj *o = zmalloc(sizeof(*o));
  o->type = type;
  o->encoding = OBJ_ENCODING_RAW;
  o->ptr = ptr;
  o->refcount = 1;

  /* Set the LRU to the current lruclock (minutes resolution), or
   * alternatively the LFU counter. */
  if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
    o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
  } else {
    o->lru = LRU_CLOCK();
  }
  return o;
}

counter会被初始化为LFU_INIT_VAL,默认5。

pool

pool算法就与LRU算法一致了:

    if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
      server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)

计算idle时有所不同:

    } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
      /* When we use an LRU policy, we sort the keys by idle time
       * so that we expire keys starting from greater idle time.
       * However when the policy is an LFU one, we have a frequency
       * estimation, and we want to evict keys with lower frequency
       * first. So inside the pool we put objects using the inverted
       * frequency subtracting the actual frequency to the maximum
       * frequency of 255. */
      idle = 255-LFUDecrAndReturn(o);

使用了255-LFUDecrAndReturn(o)当做排序的依据。

参考链接

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对找一找教程网的支持。



这篇关于Redis中LFU算法的深入分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程