Java中的浮点数分析

2019/7/7 19:30:12

本文主要是介绍Java中的浮点数分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章来源:csdn 作者:treeroot

 浮点数分为单精度和双精度,Java中的单精度和双精度分别为float和double.你们知道float和double是怎么存储的吗?

   float占4个字节,double占8个字节,为了方便起见,这里就只讨论float类型.
   float其实和一个int型的大小是一样的,一共32位,第一位表示符号,2-9表示指数,后面23位表示小数部分.这里不多说,请参考:http://blog.csdn.net/treeroot/archive/2004/09/05/95071.aspx

  这里只举一个例子,希望能抛砖引玉,就是研究一下浮点数0.1的存储形式,先运行这个程序.


  public class Test{
   public static void main(String[] args) {
   int x = 0x3d800000;
   int i = 1 << 22;
   int j = 1 << 4;
   float f = 0.1f;
   int y = Float.floatToIntBits(f);
   float rest = f - ( (float) 1) / j;

  while (i > 0) {
   j <<= 1;
   float deta = ( (float) 1) / j;
   if (rest >= deta) {
   rest -= deta;
   x |= i;
   }
   i >>= 1;
   }
   pr(x);
   pr(y);
   }

  static void pr(int i) {
   System.out.println(Integer.toBinaryString(i));
   }

  }

 结果:
   111101110011001100110011001101
   111101110011001100110011001101

  程序说明:
   int x=0x3d80000;
   因为浮点表示形式为1.f*2n-127我们要表示0.1,可以知道n-127=-4,到n=123
   符号为正,可知前9是 001111011,暂时不考虑后面的23位小数,所以我们先假设x=0x3d800000;


  int i = 1 << 22;
   i初始为第右起第23位为1,就是x的第10位

  int j = 1 << 4;

   i初始为4,因为n-127为-4,这里是为了求它的倒数.

  float f = 0.1f;
   int y = Float.floatToIntBits(f);

   y就是它的32位表示

  float rest = f - ( (float) 1) / j;

   这个rest表示除了1.f中的1剩下的,也就是0.f

  while (i > 0) {
   j <<= 1;
   float deta = ( (float) 1) / j;
   if (rest >= deta) {
   rest -= deta;
   x |= i;
   }
   i >>= 1;
   }

   这个循环来计算23位小数部分,如果rest不小于deta,表示这个位可以置为1.

  其他的不多说了,输入结果是一样的,可以说0.1这个浮点数肯定是不精确的,但是0.5可以精确的表示,想想为什么吧



这篇关于Java中的浮点数分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程