归并排序的递归实现与非递归实现代码
2019/7/10 23:23:30
本文主要是介绍归并排序的递归实现与非递归实现代码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。值得注意的是归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
时间复杂度:
时间复杂度为O(nlogn) 这是该算法中最好、最坏和平均的时间性能。
空间复杂度为 O(n)
比较操作的次数介于(nlogn) / 2和nlogn - n + 1。
赋值操作的次数是(2nlogn)。归并算法的空间复杂度为:0 (n)
归并排序比较占用内存,但却效率高且稳定的算法。
(以上摘抄自百度百科)
代码实现
自顶向上实现:
//使用辅助数组实现归并的过程
void MergeSort(int *aux, int *data, int l, int m, int h)
{
int k=0, i=l, j=m+1;
for(k=l; k<=h; k++)
{
if(i>m) aux[k]=data[j++];
else if(j>h) aux[k]=data[i++];
else if(data[i]<data[j]) aux[k]=data[i++];
else aux[k]=data[j++];
}
for(k=l; k<=h; k++)
data[k]=aux[k];
}
用递归实现排序的过程(自顶向下归并)
void Sort(int *aux, int *data, int l, int h)
{
if(l<h)
{
int m=l+(h-l)/2;
Sort(aux, data, l, m);
Sort(aux, data, m+1, h);
MergeSort(aux,data, l, m, h);
}
}
用非递归实现排序的过程(自底向上归并)
void NonRerMerSort(int *aux, int *data, int l, int h)
{
int i=l, j;
for(i=l; i<=h; i=2*i)
{
for(j=l; j<=h-i; j+=2*i)
MergeSort(aux, data, j, i+j-1, Min(j+2*i-1,h));
}
}
这篇关于归并排序的递归实现与非递归实现代码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享