递归形式与非递归形式的斐波那契数列的用法分析
2019/7/10 23:25:50
本文主要是介绍递归形式与非递归形式的斐波那契数列的用法分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
复制代码 代码如下:
<SPAN style="FONT-SIZE: 32px">采用递归形式和非递归形式实现斐波那契数列</SPAN>
复制代码 代码如下:
#include "stdafx.h"
#include <iostream>
using namespace std;
//递归形式的斐波那契数列
int fibonacciRecursion(int n)
{
if (n == 1 || n ==2)
{
return 1;
}
if (n > 2)
{
return fibonacciRecursion(n - 1) + fibonacciRecursion(n - 2);
}
}
//非递归形式的斐波那契数列
//用一个数组作为辅助的空间
//效率较高
int fibonacci(int n)
{
int temp[2];
temp[0] = 1;
temp[1] = 1;
if (n == 1 || n == 2)
{
return 1;
}
else
{
for (int i = 2; i < n; i ++)
{
int tp = temp[0] + temp[1];
temp[1] = temp[0];
temp[0] = tp;
}
return temp[0];
}
}
测试代码:
复制代码 代码如下:
int _tmain(int argc, _TCHAR* argv[])
{
cout << fibonacci(1) << " " << fibonacci(2) << " " << fibonacci(3) << " " << fibonacci(4) << " "
<< fibonacci(5) << " " << fibonacci(6) << " "<< fibonacci(7) << " "<< fibonacci(8) << " "
<< fibonacci(9) << " " << fibonacci(10) << endl;
cout << fibonacciRecursion(1) << " " << fibonacciRecursion(2) << " " << fibonacciRecursion(3) << " " <<
fibonacciRecursion(4) << " "<< fibonacciRecursion(5) << " " << fibonacciRecursion(6) << " "<< fibonacciRecursion(7)
<< " "<< fibonacciRecursion(8) << " "<< fibonacciRecursion(9) << " " << fibonacciRecursion(10) << endl;
return 0;
}
这篇关于递归形式与非递归形式的斐波那契数列的用法分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享