对pandas数据判断是否为NaN值的方法详解

2019/7/15 0:02:16

本文主要是介绍对pandas数据判断是否为NaN值的方法详解,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。

具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。

def age_map(x):
 if x < 26:
  return 0
 elif x >=26 and x <= 35:
  return 1
 elif x > 35 and x <= 45:
  return 2
 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断
  return 3
 else:
  return 4

也就是用pandas自带的函数来表示:

pd.isnull(x) 

最后我们可以应用map函数:

data['age'] = data['birth_year'].map(age_map)

以上这篇对pandas数据判断是否为NaN值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持找一找教程网。



这篇关于对pandas数据判断是否为NaN值的方法详解的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程