- 物联网简介
- 物联网特点
- 物联网的优点和缺点
- 物联网的嵌入式设备(系统)
- 物联网生态系统
- 物联网决策框架
- 物联网架构
- 超声波传感器HC-SR04和Arduino设备的Sonar系统项目
- 压力传感器BMP180和Arduino设备进行温度和压力测量
- 压力传感器BMP180和Arduino设备进行温度,压力和高度测量
- 架构和领域
- 物联网设备
- 物联网平台
- 通讯
- 物联网+Arduino
超声波传感器HC-SR04和Arduino设备的Sonar系统项目
这是一个使用Ultrasonic HC-SR04设备和Arduino(Arduino UNO)构建声纳系统的物联网项目。声纳系统检测到其范围内的物体(角度和距离)并在笔记本电脑(监视器)屏幕上显示其外观。声纳使用声波的回声原理通过物体。
硬件要求
- Arduino UNO主板
- 用于Arduino UNO的USB电缆连接器
- Ultra Sonic HC-SR04
- 跳线电线(公母线)
- 微服务器SG90
软件要求
- Arduino软件
- Processing软件
声纳系统的工作原理
Ultra Sonic HC-SR04以40,000Hz的频率发射超声波,在空中传播。如果路径中有物体或障碍物,则声波会与物体碰撞并弹回Ultra Sonic模块。对象的角度和距离显示在屏幕上(监视器)。
在这个项目中,我们使用处理应用程序来显示声纳范围。
在为Sonar系统编写程序之前,首先要通过超声波传感器HC-SR04和Arduino进行距离计算,这里要了解超声波设备的工作原理。
编写Arduino程序,使用Ultra Sonic HC-SR04测量距离并旋转伺服电机。示例代码如下:
#include <Servo.h> const int trigPin = 8; const int echoPin = 9; long duration; //declare time duration int distance; //declare distance Servo myServo; // Object servo void setup() { pinMode(trigPin, OUTPUT); // trigPin as an output pinMode(echoPin, INPUT); // echoPin as an input Serial.begin(9600); myServo.attach(10); // pin connected to Servo } void loop() { // rotating servo i++ depicts increment of one degree for(int i=0;i<=180;i++){ myServo.write(i); delay(30); distance = calculateDistance(); Serial.print(i); Serial.print(","); Serial.print(distance); Serial.print("."); } // Repeats the previous lines from 180 to 0 degrees for(int i=180;i>0;i--){ myServo.write(i); delay(30); distance = calculateDistance(); Serial.print(i); Serial.print(","); Serial.print(distance); Serial.print("."); } } int calculateDistance(){ digitalWrite(trigPin, LOW); delayMicroseconds(2); // Sets the trigPin on HIGH state for 10 micro seconds digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance= duration*0.034/2; return distance; }
编译上面代码,如下所示:
现在,使用Arduino USB连接器将Arduino设备连接到个人计算机并上传程序。
数字电路图
Ultrasonic Sensor HC-SR04 Arduino UNO VCC --------------------------------> 5v Trig --------------------------------> Pin 8 Echo --------------------------------> Pin 9 GND --------------------------------> GND Micro Servo Motor SG90 Arduino UNO Orange wire ----------------------> Pin 10 Red wire ----------------------> 3.3v Brown wire ----------------------> GND
现在,将风扇的较大部分放在伺服电机的旋转轮上。将超声波设备放在伺服电机上使其旋转(可以使用双面胶带)。
在Processing IDE中测试以下代码并运行它。处理IDE显示物体进入超声波设备范围时的角度距离。
import processing.serial.*; import java.awt.event.KeyEvent; import java.io.IOException; Serial myPort;// defubes variables String angle=""; String distance=""; String data=""; String noObject; float pixsDistance; int iAngle, iDistance; int index1=0; int index2=0; PFont orcFont; void setup() { size (1366, 768); smooth(); myPort = new Serial(this,"COM3", 9600); // change this accordingly myPort.bufferUntil('.'); // reads the data from the serial port up to the character ?.?. So actually it reads this: angle,distance. } void draw() { fill(98,245,31); // simulating motion blur and slow fade of the moving line noStroke(); fill(0,4); rect(0, 0, width, height-height*0.065); fill(98,245,31); // green color // calls the functions for drawing the radar drawRadar(); drawLine(); drawObject(); drawText(); } void serialEvent (Serial myPort) { // starts reading data from the Serial Port // reads the data from the Serial Port up to the character ?.? and puts it into the String variable ?data?. data = myPort.readStringUntil('.'); data = data.substring(0,data.length()-1); index1 = data.indexOf(","); // find the character ?,? and puts it into the variable ?index1? angle= data.substring(0, index1); // read the data from position ?0? to position of the variable index1 or thats the value of the angle the Arduino Board sent into the Serial Port distance= data.substring(index1+1, data.length()); // read the data from position ?index1? to the end of the data pr thats the value of the distance // converts the String variables into Integer iAngle = int(angle); iDistance = int(distance); } void drawRadar() { pushMatrix(); translate(width/2,height-height*0.074); // moves the starting coordinats to new location noFill(); strokeWeight(2); stroke(98,245,31); // draws the arc lines arc(0,0,(width-width*0.0625),(width-width*0.0625),PI,TWO_PI); arc(0,0,(width-width*0.27),(width-width*0.27),PI,TWO_PI); arc(0,0,(width-width*0.479),(width-width*0.479),PI,TWO_PI); arc(0,0,(width-width*0.687),(width-width*0.687),PI,TWO_PI); // draws the angle lines line(-width/2,0,width/2,0); line(0,0,(-width/2)*cos(radians(30)),(-width/2)*sin(radians(30))); line(0,0,(-width/2)*cos(radians(60)),(-width/2)*sin(radians(60))); line(0,0,(-width/2)*cos(radians(90)),(-width/2)*sin(radians(90))); line(0,0,(-width/2)*cos(radians(120)),(-width/2)*sin(radians(120))); line(0,0,(-width/2)*cos(radians(150)),(-width/2)*sin(radians(150))); line((-width/2)*cos(radians(30)),0,width/2,0); popMatrix(); } void drawObject() { pushMatrix(); translate(width/2,height-height*0.074); // moves the starting coordinats to new location strokeWeight(9); stroke(255,10,10); // red color pixsDistance = iDistance*((height-height*0.1666)*0.025); // covers the distance from the sensor from cm to pixels // limiting the range to 40 cms if(iDistance<40){ // draws the object according to the angle and the distance line(pixsDistance*cos(radians(iAngle)),-pixsDistance*sin(radians(iAngle)),(width-width*0.505)*cos(radians(iAngle)),-(width-width*0.505)*sin(radians(iAngle))); } popMatrix(); } void drawLine() { pushMatrix(); strokeWeight(9); stroke(30,250,60); translate(width/2,height-height*0.074); // moves the starting coordinats to new location line(0,0,(height-height*0.12)*cos(radians(iAngle)),-(height-height*0.12)*sin(radians(iAngle))); // draws the line according to the angle popMatrix(); } void drawText() { // draws the texts on the screen pushMatrix(); if(iDistance>40) { noObject = "Out of Range"; } else { noObject = "In Range"; } fill(0,0,0); noStroke(); rect(0, height-height*0.0648, width, height); fill(98,245,31); textSize(25); text("10cm",width-width*0.3854,height-height*0.0833); text("20cm",width-width*0.281,height-height*0.0833); text("30cm",width-width*0.177,height-height*0.0833); text("40cm",width-width*0.0729,height-height*0.0833); textSize(40); text("Angle: " + iAngle +" ?", width-width*0.78, height-height*0.0277); text("Distance: ", width-width*0.36, height-height*0.0277); if(iDistance<40) { text(" " + iDistance +" cm", width-width*0.225, height-height*0.0277); } textSize(25); fill(98,245,60); translate((width-width*0.4994)+width/2*cos(radians(30)),(height-height*0.0907)-width/2*sin(radians(30))); rotate(-radians(-60)); text("30?",0,0); resetMatrix(); translate((width-width*0.503)+width/2*cos(radians(60)),(height-height*0.0888)-width/2*sin(radians(60))); rotate(-radians(-30)); text("60?",0,0); resetMatrix(); translate((width-width*0.507)+width/2*cos(radians(90)),(height-height*0.0833)-width/2*sin(radians(90))); rotate(radians(0)); text("90?",0,0); resetMatrix(); translate(width-width*0.513+width/2*cos(radians(120)),(height-height*0.07129)-width/2*sin(radians(120))); rotate(radians(-30)); text("120?",0,0); resetMatrix(); translate((width-width*0.5104)+width/2*cos(radians(150)),(height-height*0.0574)-width/2*sin(radians(150))); rotate(radians(-60)); text("150?",0,0); popMatrix(); }
现在,运行 processing 应用程序并将对象(笔)放在超声波设备前面。当伺服电机旋转且物体进入超声波装置范围内时,物体的外观就会出现在显示屏上。物体的存在用红色标记标记,如果超声波设备处理应用范围内没有物体,则显示绿色标记。
上一篇:物联网架构
扫描二维码
程序员编程王