《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化
2021/4/7 2:58:12
本文主要是介绍《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化
.
4.1.1 策略评价
4.1.2 资金曲线图 Statistics
.
.
.
《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化 4.1.1 策略评价
“”"
本节课程内容
评价策略好坏的主流指标
“”"
import pandas as pd
from Statistics import *
pd.set_option(‘expand_frame_repr’, False) # 当列太多时不换行
pd.set_option(‘display.max_rows’, 5000) # 最多显示数据的行数
读取资金曲线数据
equity_curve = pd.read_pickle(’/Users/xingbuxingx/Desktop/数字货币量化课程/2020版数字货币量化投资课程/xbx_coin_2020/data/cls-4.1.1/equity_curve.pkl’)
print(equity_curve)
计算每笔交易
trade = transfer_equity_curve_to_trade(equity_curve)
print(trade)
计算各类统计指标
r, monthly_return = strategy_evaluate(equity_curve, trade)
print®
print(monthly_return)
**《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化 4.1.1 策略评价** """ # 本节课程内容 评价策略好坏的主流指标 """ import pandas as pd from Statistics import * pd.set_option('expand_frame_repr', False) # 当列太多时不换行 pd.set_option('display.max_rows', 5000) # 最多显示数据的行数 # 读取资金曲线数据 equity_curve = pd.read_pickle('/Users/xingbuxingx/Desktop/数字货币量化课程/2020版数字货币量化投资课程/xbx_coin_2020/data/cls-4.1.1/equity_curve.pkl') # print(equity_curve) # 计算每笔交易 trade = transfer_equity_curve_to_trade(equity_curve) print(trade) # 计算各类统计指标 r, monthly_return = strategy_evaluate(equity_curve, trade) print(r) print(monthly_return)
《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化 4.1.2 资金曲线图 Statistics
“”"
课程内容
策略评价函数
“”"
import pandas as pd
import numpy as np
import itertools
======= 策略评价 =========
将资金曲线数据,转化为交易数据
def transfer_equity_curve_to_trade(equity_curve):
“”"
将资金曲线数据,转化为一笔一笔的交易
:param equity_curve: 资金曲线函数计算好的结果,必须包含pos
:return:
“”"
# =选取开仓、平仓条件
condition1 = equity_curve[‘pos’] != 0
condition2 = equity_curve[‘pos’] != equity_curve[‘pos’].shift(1)
open_pos_condition = condition1 & condition2
# =计算每笔交易的start_time if 'start_time' not in equity_curve.columns: equity_curve.loc[open_pos_condition, 'start_time'] = equity_curve['candle_begin_time'] equity_curve['start_time'].fillna(method='ffill', inplace=True) equity_curve.loc[equity_curve['pos'] == 0, 'start_time'] = pd.NaT # =对每次交易进行分组,遍历每笔交易 trade = pd.DataFrame() # 计算结果放在trade变量中 for _index, group in equity_curve.groupby('start_time'): # 记录每笔交易 # 本次交易方向 trade.loc[_index, 'signal'] = group['pos'].iloc[0] # 本次交易杠杆倍数 if 'leverage_rate' in group: trade.loc[_index, 'leverage_rate'] = group['leverage_rate'].iloc[0] g = group[group['pos'] != 0] # 去除pos=0的行 # 本次交易结束那根K线的开始时间 trade.loc[_index, 'end_bar'] = g.iloc[-1]['candle_begin_time'] # 开仓价格 trade.loc[_index, 'start_price'] = g.iloc[0]['open'] # 平仓信号的价格 trade.loc[_index, 'end_price'] = g.iloc[-1]['close'] # 持仓k线数量 trade.loc[_index, 'bar_num'] = g.shape[0] # 本次交易收益 trade.loc[_index, 'change'] = (group['equity_change'] + 1).prod() - 1 # 本次交易结束时资金曲线 trade.loc[_index, 'end_equity_curve'] = g.iloc[-1]['equity_curve'] # 本次交易中资金曲线最低值 trade.loc[_index, 'min_equity_curve'] = g['equity_curve'].min() return trade
计算策略评价指标
def strategy_evaluate(equity_curve, trade):
“”"
:param equity_curve: 带资金曲线的df
:param trade: transfer_equity_curve_to_trade的输出结果,每笔交易的df
:return:
“”"
# ===新建一个dataframe保存回测指标 results = pd.DataFrame() # ===计算累积净值 results.loc[0, '累积净值'] = round(equity_curve['equity_curve'].iloc[-1], 2) # ===计算年化收益 annual_return = (equity_curve['equity_curve'].iloc[-1] / equity_curve['equity_curve'].iloc[0]) ** ( '1 days 00:00:00' / (equity_curve['candle_begin_time'].iloc[-1] - equity_curve['candle_begin_time'].iloc[0]) * 365) - 1 results.loc[0, '年化收益'] = str(round(annual_return, 2)) + ' 倍' # ===计算最大回撤,最大回撤的含义:《如何通过3行代码计算最大回撤》https://mp.weixin.qq.com/s/Dwt4lkKR_PEnWRprLlvPVw # 计算当日之前的资金曲线的最高点 equity_curve['max2here'] = equity_curve['equity_curve'].expanding().max() # 计算到历史最高值到当日的跌幅,drowdwon equity_curve['dd2here'] = equity_curve['equity_curve'] / equity_curve['max2here'] - 1 # 计算最大回撤,以及最大回撤结束时间 end_date, max_draw_down = tuple(equity_curve.sort_values(by=['dd2here']).iloc[0][['candle_begin_time', 'dd2here']]) # 计算最大回撤开始时间 start_date = equity_curve[equity_curve['candle_begin_time'] <= end_date].sort_values(by='equity_curve', ascending=False).iloc[0]['candle_begin_time'] # 将无关的变量删除 equity_curve.drop(['max2here', 'dd2here'], axis=1, inplace=True) results.loc[0, '最大回撤'] = format(max_draw_down, '.2%') results.loc[0, '最大回撤开始时间'] = str(start_date) results.loc[0, '最大回撤结束时间'] = str(end_date) # ===年化收益/回撤比 results.loc[0, '年化收益/回撤比'] = round(abs(annual_return / max_draw_down), 2) # ===统计每笔交易 results.loc[0, '盈利笔数'] = len(trade.loc[trade['change'] > 0]) # 盈利笔数 results.loc[0, '亏损笔数'] = len(trade.loc[trade['change'] <= 0]) # 亏损笔数 results.loc[0, '胜率'] = format(results.loc[0, '盈利笔数'] / len(trade), '.2%') # 胜率 results.loc[0, '每笔交易平均盈亏'] = format(trade['change'].mean(), '.2%') # 每笔交易平均盈亏 results.loc[0, '盈亏收益比'] = round(trade.loc[trade['change'] > 0]['change'].mean() / \ trade.loc[trade['change'] < 0]['change'].mean() * (-1), 2) # 盈亏比 results.loc[0, '单笔最大盈利'] = format(trade['change'].max(), '.2%') # 单笔最大盈利 results.loc[0, '单笔最大亏损'] = format(trade['change'].min(), '.2%') # 单笔最大亏损 # ===统计持仓时间,会比实际时间少一根K线的是距离 trade['持仓时间'] = trade['end_bar'] - trade.index max_days, max_seconds = trade['持仓时间'].max().days, trade['持仓时间'].max().seconds max_hours = max_seconds // 3600 max_minute = (max_seconds - max_hours * 3600) // 60 results.loc[0, '单笔最长持有时间'] = str(max_days) + ' 天 ' + str(max_hours) + ' 小时 ' + str(max_minute) + ' 分钟' # 单笔最长持有时间 min_days, min_seconds = trade['持仓时间'].min().days, trade['持仓时间'].min().seconds min_hours = min_seconds // 3600 min_minute = (min_seconds - min_hours * 3600) // 60 results.loc[0, '单笔最短持有时间'] = str(min_days) + ' 天 ' + str(min_hours) + ' 小时 ' + str(min_minute) + ' 分钟' # 单笔最短持有时间 mean_days, mean_seconds = trade['持仓时间'].mean().days, trade['持仓时间'].mean().seconds mean_hours = mean_seconds // 3600 mean_minute = (mean_seconds - mean_hours * 3600) // 60 results.loc[0, '平均持仓周期'] = str(mean_days) + ' 天 ' + str(mean_hours) + ' 小时 ' + str(mean_minute) + ' 分钟' # 平均持仓周期 # ===连续盈利亏算 results.loc[0, '最大连续盈利笔数'] = max( [len(list(v)) for k, v in itertools.groupby(np.where(trade['change'] > 0, 1, np.nan))]) # 最大连续盈利笔数 results.loc[0, '最大连续亏损笔数'] = max( [len(list(v)) for k, v in itertools.groupby(np.where(trade['change'] < 0, 1, np.nan))]) # 最大连续亏损笔数 # ===每月收益率 equity_curve.set_index('candle_begin_time', inplace=True) monthly_return = equity_curve[['equity_change']].resample(rule='M').apply(lambda x: (1 + x).prod() - 1) return results.T, monthly_return
**《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化 4.1.2 资金曲线图 Statistics** """ # 课程内容 策略评价函数 """ import pandas as pd import numpy as np import itertools # ======= 策略评价 ========= # 将资金曲线数据,转化为交易数据 def transfer_equity_curve_to_trade(equity_curve): """ 将资金曲线数据,转化为一笔一笔的交易 :param equity_curve: 资金曲线函数计算好的结果,必须包含pos :return: """ # =选取开仓、平仓条件 condition1 = equity_curve['pos'] != 0 condition2 = equity_curve['pos'] != equity_curve['pos'].shift(1) open_pos_condition = condition1 & condition2 # =计算每笔交易的start_time if 'start_time' not in equity_curve.columns: equity_curve.loc[open_pos_condition, 'start_time'] = equity_curve['candle_begin_time'] equity_curve['start_time'].fillna(method='ffill', inplace=True) equity_curve.loc[equity_curve['pos'] == 0, 'start_time'] = pd.NaT # =对每次交易进行分组,遍历每笔交易 trade = pd.DataFrame() # 计算结果放在trade变量中 for _index, group in equity_curve.groupby('start_time'): # 记录每笔交易 # 本次交易方向 trade.loc[_index, 'signal'] = group['pos'].iloc[0] # 本次交易杠杆倍数 if 'leverage_rate' in group: trade.loc[_index, 'leverage_rate'] = group['leverage_rate'].iloc[0] g = group[group['pos'] != 0] # 去除pos=0的行 # 本次交易结束那根K线的开始时间 trade.loc[_index, 'end_bar'] = g.iloc[-1]['candle_begin_time'] # 开仓价格 trade.loc[_index, 'start_price'] = g.iloc[0]['open'] # 平仓信号的价格 trade.loc[_index, 'end_price'] = g.iloc[-1]['close'] # 持仓k线数量 trade.loc[_index, 'bar_num'] = g.shape[0] # 本次交易收益 trade.loc[_index, 'change'] = (group['equity_change'] + 1).prod() - 1 # 本次交易结束时资金曲线 trade.loc[_index, 'end_equity_curve'] = g.iloc[-1]['equity_curve'] # 本次交易中资金曲线最低值 trade.loc[_index, 'min_equity_curve'] = g['equity_curve'].min() return trade # 计算策略评价指标 def strategy_evaluate(equity_curve, trade): """ :param equity_curve: 带资金曲线的df :param trade: transfer_equity_curve_to_trade的输出结果,每笔交易的df :return: """ # ===新建一个dataframe保存回测指标 results = pd.DataFrame() # ===计算累积净值 results.loc[0, '累积净值'] = round(equity_curve['equity_curve'].iloc[-1], 2) # ===计算年化收益 annual_return = (equity_curve['equity_curve'].iloc[-1] / equity_curve['equity_curve'].iloc[0]) ** ( '1 days 00:00:00' / (equity_curve['candle_begin_time'].iloc[-1] - equity_curve['candle_begin_time'].iloc[0]) * 365) - 1 results.loc[0, '年化收益'] = str(round(annual_return, 2)) + ' 倍' # ===计算最大回撤,最大回撤的含义:《如何通过3行代码计算最大回撤》https://mp.weixin.qq.com/s/Dwt4lkKR_PEnWRprLlvPVw # 计算当日之前的资金曲线的最高点 equity_curve['max2here'] = equity_curve['equity_curve'].expanding().max() # 计算到历史最高值到当日的跌幅,drowdwon equity_curve['dd2here'] = equity_curve['equity_curve'] / equity_curve['max2here'] - 1 # 计算最大回撤,以及最大回撤结束时间 end_date, max_draw_down = tuple(equity_curve.sort_values(by=['dd2here']).iloc[0][['candle_begin_time', 'dd2here']]) # 计算最大回撤开始时间 start_date = equity_curve[equity_curve['candle_begin_time'] <= end_date].sort_values(by='equity_curve', ascending=False).iloc[0]['candle_begin_time'] # 将无关的变量删除 equity_curve.drop(['max2here', 'dd2here'], axis=1, inplace=True) results.loc[0, '最大回撤'] = format(max_draw_down, '.2%') results.loc[0, '最大回撤开始时间'] = str(start_date) results.loc[0, '最大回撤结束时间'] = str(end_date) # ===年化收益/回撤比 results.loc[0, '年化收益/回撤比'] = round(abs(annual_return / max_draw_down), 2) # ===统计每笔交易 results.loc[0, '盈利笔数'] = len(trade.loc[trade['change'] > 0]) # 盈利笔数 results.loc[0, '亏损笔数'] = len(trade.loc[trade['change'] <= 0]) # 亏损笔数 results.loc[0, '胜率'] = format(results.loc[0, '盈利笔数'] / len(trade), '.2%') # 胜率 results.loc[0, '每笔交易平均盈亏'] = format(trade['change'].mean(), '.2%') # 每笔交易平均盈亏 results.loc[0, '盈亏收益比'] = round(trade.loc[trade['change'] > 0]['change'].mean() / \ trade.loc[trade['change'] < 0]['change'].mean() * (-1), 2) # 盈亏比 results.loc[0, '单笔最大盈利'] = format(trade['change'].max(), '.2%') # 单笔最大盈利 results.loc[0, '单笔最大亏损'] = format(trade['change'].min(), '.2%') # 单笔最大亏损 # ===统计持仓时间,会比实际时间少一根K线的是距离 trade['持仓时间'] = trade['end_bar'] - trade.index max_days, max_seconds = trade['持仓时间'].max().days, trade['持仓时间'].max().seconds max_hours = max_seconds // 3600 max_minute = (max_seconds - max_hours * 3600) // 60 results.loc[0, '单笔最长持有时间'] = str(max_days) + ' 天 ' + str(max_hours) + ' 小时 ' + str(max_minute) + ' 分钟' # 单笔最长持有时间 min_days, min_seconds = trade['持仓时间'].min().days, trade['持仓时间'].min().seconds min_hours = min_seconds // 3600 min_minute = (min_seconds - min_hours * 3600) // 60 results.loc[0, '单笔最短持有时间'] = str(min_days) + ' 天 ' + str(min_hours) + ' 小时 ' + str(min_minute) + ' 分钟' # 单笔最短持有时间 mean_days, mean_seconds = trade['持仓时间'].mean().days, trade['持仓时间'].mean().seconds mean_hours = mean_seconds // 3600 mean_minute = (mean_seconds - mean_hours * 3600) // 60 results.loc[0, '平均持仓周期'] = str(mean_days) + ' 天 ' + str(mean_hours) + ' 小时 ' + str(mean_minute) + ' 分钟' # 平均持仓周期 # ===连续盈利亏算 results.loc[0, '最大连续盈利笔数'] = max( [len(list(v)) for k, v in itertools.groupby(np.where(trade['change'] > 0, 1, np.nan))]) # 最大连续盈利笔数 results.loc[0, '最大连续亏损笔数'] = max( [len(list(v)) for k, v in itertools.groupby(np.where(trade['change'] < 0, 1, np.nan))]) # 最大连续亏损笔数 # ===每月收益率 equity_curve.set_index('candle_begin_time', inplace=True) monthly_return = equity_curve[['equity_change']].resample(rule='M').apply(lambda x: (1 + x).prod() - 1) return results.T, monthly_return
这篇关于《python数字货币量化交易》学习笔记 第四部分别有洞天篇 4.1 择时策略实盘与优化的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-25Python编程基础:变量与类型
- 2024-11-25Python编程基础与实践
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器