Pytorch实现一个简单分类模型
2021/4/25 18:29:04
本文主要是介绍Pytorch实现一个简单分类模型,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Pytorch实现一个简单分类模型
在本小节主要带领大家学习分类任务的代码编写,另外,本人参考的学习资料为【莫烦Python】,有兴趣观看视频的同学可以观看视频资料https://www.youtube.com/user/MorvanZhou。
特别声明:本人写该博客的目的其一是自己学习了一些知识做一下记录,另外也是为【莫烦Python】做下推广,我是看了他的视频,感觉使用pytorch有种上手的感觉。
第一步:引入所需调用的package
编写os.environ[“KMP_DUPLICATE_LIB_OK”]="TRUE"的原因:如果不添加该语句程序可能会出现OMP错误,我在做测试时是这个样子的。
import torch import torch.nn.functional as F import matplotlib.pyplot as plt import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
第二步:先定义训练模型的训练数据
n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2) y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1) x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2) y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1) x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer,torch中标签的类型规定为LongTensor
可视化生成的数据:
第三步:定义网络结构
class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer self.out = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.out(x) return x net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network print(net) # net architecture
第四步:设置优化参数和损失函数
optimizer = torch.optim.SGD(net.parameters(), lr=0.02) loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted
第五步:进行训练
or t in range(100): out = net(x) # input x and predict based on x loss = loss_func(out, y) # must be (1. nn output, 2. target), the target label is NOT one-hotted optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients
整体代码
因为没有测试代码,因此添加了可视化的网络学习过程。
import torch import torch.nn.functional as F import matplotlib.pyplot as plt import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # torch.manual_seed(1) # reproducible # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2) y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1) x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2) y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1) x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer self.out = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.out(x) return x net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network print(net) # net architecture optimizer = torch.optim.SGD(net.parameters(), lr=0.02) loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted plt.ion() # something about plotting for t in range(100): out = net(x) # input x and predict based on x loss = loss_func(out, y) # must be (1. nn output, 2. target), the target label is NOT one-hotted optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if t % 2 == 0: # plot and show learning process plt.cla() prediction = torch.max(out, 1)[1] pred_y = prediction.data.numpy() target_y = y.data.numpy() plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
看过Pytorch实现一个简单回归模型https://blog.csdn.net/littlle_yan/article/details/116131963博客的同学会发现两个代码很相似,其改变的仅仅是输入的数据,损失函数,网络结构是相同的。不知道你们看完这样的代码有没有焕然一新有点感觉,要是没有感觉,那我就又要推荐大家看下视频了,跟着视频学习一下可能会效果更好。
这篇关于Pytorch实现一个简单分类模型的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-26MATLAB 中 A(7)=[];什么意思?-icode9专业技术文章分享
- 2024-11-26UniApp 中如何实现使用输入法时保持页面列表不动的效果?-icode9专业技术文章分享
- 2024-11-26在 UniApp 中怎么实现输入法弹出时禁止页面向上滚动?-icode9专业技术文章分享
- 2024-11-26WebSocket是什么,怎么使用?-icode9专业技术文章分享
- 2024-11-26页面有多个ref 要动态传入怎么实现?-icode9专业技术文章分享
- 2024-11-26在 UniApp 中实现一个底部输入框的常见方法有哪些?-icode9专业技术文章分享
- 2024-11-26RocketMQ入门指南:搭建与使用全流程详解
- 2024-11-26RocketMQ入门教程:轻松搭建与使用指南
- 2024-11-26手写RocketMQ:从入门到实践的简单教程
- 2024-11-25【机器学习(二)】分类和回归任务-决策树(Decision Tree,DT)算法-Sentosa_DSML社区版