python中的apscheduler的调度器BackgroundScheduler和BlockingScheduler的区别(转载)
2021/4/30 12:55:20
本文主要是介绍python中的apscheduler的调度器BackgroundScheduler和BlockingScheduler的区别(转载),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
APScheduler最基本的用法: “定时几秒后启动job”
两种调度器: BackgroundScheduler和BlockingScheduler的区别,
job执行时间大于定时调度时间特殊情况的问题及解决方法
每个job都会以thread的方式被调度。
1、基本的定时调度
APScheduler是python的一个定时任务调度框架,能实现类似linux下crontab类型的任务,使用起来比较方便。它提供基于固定时间间隔、日期以及crontab配置类似的任务调度,并可以持久化任务,或将任务以daemon方式运行。
下面是一个最基本的使用示例:
from apscheduler.schedulers.blocking import BlockingScheduler def job(): print('job 3s') if __name__=='__main__': sched = BlockingScheduler(timezone='MST') sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start()
它能实现每隔3s就调度job()运行一次,所以程序每隔3s就输出’job 3s’。通过修改add_job()的参数seconds,就可以改变任务调度的间隔时间。
2、BlockingScheduler与BackgroundScheduler区别
APScheduler中有很多种不同类型的调度器,BlockingScheduler与BackgroundScheduler是其中最常用的两种调度器。那他们之间有什么区别呢? 简单来说,区别主要在于BlockingScheduler会阻塞主线程的运行,而BackgroundScheduler不会阻塞。所以,我们在不同的情况下,选择不同的调度器:
BlockingScheduler: 调用start函数后会阻塞当前线程。当调度器是你应用中唯一要运行的东西时(如上例)使用。
BackgroundScheduler: 调用start后主线程不会阻塞。当你不运行任何其他框架时使用,并希望调度器在你应用的后台执行。
下面用两个例子来更直观的说明两者的区别。
BlockingScheduler例子
from apscheduler.schedulers.blocking import BlockingScheduler import time def job(): print('job 3s') if __name__=='__main__': sched = BlockingScheduler(timezone='MST') sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): # 不会被执行到 print('main 1s') time.sleep(1)
运行这个程序,我们得到如下的输出:
job 3s job 3s job 3s job 3s
可见,BlockingScheduler调用start函数后会阻塞当前线程,导致主程序中while循环不会被执行到。
BackgroundScheduler例子
from apscheduler.schedulers.background import BackgroundScheduler import time def job(): print('job 3s') if __name__=='__main__': sched = BackgroundScheduler(timezone='MST') sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): print('main 1s') time.sleep(1)
可见,BackgroundScheduler调用start函数后并不会阻塞当前线程,所以可以继续执行主程序中while循环的逻辑。
main 1s main 1s main 1s job 3s main 1s main 1s main 1s job 3s
通过这个输出,我们也可以发现,调用start函数后,job()并不会立即开始执行。而是等待3s后,才会被调度执行。
如何让job在start()后就开始运行
如何才能让调度器调用start函数后,job()就立即开始执行呢?
其实APScheduler并没有提供很好的方法来解决这个问题,但有一种最简单的方式,就是在调度器start之前,就运行一次job(),如下
from apscheduler.schedulers.background import BackgroundScheduler import time def job(): print('job 3s') if __name__=='__main__': job() # 执行一次就好了哟 sched = BackgroundScheduler(timezone='MST') sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): print('main 1s') time.sleep(1)
这样就能得到如下的输出
job 3s main 1s main 1s main 1s job 3s main 1s main 1s main 1s
这样虽然没有绝对做到“让job在start()后就开始运行”,但也能做到“不等待调度,而是刚开始就运行job”。
如果job执行时间过长会怎么样
如果执行job()的时间需要5s,但调度器配置为每隔3s就调用一下job(),会发生什么情况呢?我们写了如下例子:
from apscheduler.schedulers.background import BackgroundScheduler import time def job(): print('job 3s') time.sleep(5) if __name__=='__main__': sched = BackgroundScheduler(timezone='MST') sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): print('main 1s') time.sleep(1)
运行这个程序,我们得到如下的输出:
main 1s main 1s main 1s job 3s main 1s main 1s main 1s Execution of job "job (trigger: interval[0:00:03], next run at: 2018-05-07 02:44:29 MST)" skipped: maximum number of running instances reached (1) main 1s main 1s main 1s job 3s main 1s
可见,3s时间到达后,并不会“重新启动一个job线程”,而是会跳过该次调度,等到下一个周期(再等待3s),又重新调度job()。
为了能让多个job()同时运行,我们也可以配置调度器的参数max_instances,如下例,我们允许2个job()同时运行:
from apscheduler.schedulers.background import BackgroundScheduler import time def job(): print('job 3s') time.sleep(5) if __name__=='__main__': job_defaults = { 'max_instances': 2 } sched = BackgroundScheduler(timezone='MST', job_defaults=job_defaults) sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): print('main 1s') time.sleep(1)
运行程序,我们得到如下的输出:
main 1s main 1s main 1s job 3s main 1s main 1s main 1s job 3s main 1s main 1s main 1s job 3s
每个job是怎么被调度的
通过上面的例子,我们发现,调度器是定时调度job()函数,来实现调度的。
那job()函数会被以进程的方式调度运行,还是以线程来运行呢?
为了弄清这个问题,我们写了如下程序:
from apscheduler.schedulers.background import BackgroundScheduler import time,os,threading def job(): print('job thread_id-{0}, process_id-{1}'.format(threading.get_ident(), os.getpid())) time.sleep(50) if __name__=='__main__': job_defaults = { 'max_instances': 20 } sched = BackgroundScheduler(timezone='MST', job_defaults=job_defaults) sched.add_job(job, 'interval', id='3_second_job', seconds=3) sched.start() while(True): print('main 1s') time.sleep(1)
运行程序,我们得到如下的输出:
main 1s main 1s main 1s job thread_id-10644, process_id-8872 main 1s main 1s main 1s job thread_id-3024, process_id-8872 main 1s main 1s main 1s job thread_id-6728, process_id-8872 main 1s main 1s main 1s job thread_id-11716, process_id-8872
可见,每个job()的进程ID都相同,但线程ID不同。所以,job()最终是以线程的方式被调度执行。
作者:不_一
链接:https://www.jianshu.com/p/b829a920bd33
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
这篇关于python中的apscheduler的调度器BackgroundScheduler和BlockingScheduler的区别(转载)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型
- 2024-12-23使用python部署一个usdt合约,部署自己的usdt稳定币
- 2024-12-20Python编程入门指南