粒子群算法-PSO

2021/5/19 22:31:27

本文主要是介绍粒子群算法-PSO,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

粒子群优化算法

1. 背景知识

1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO)。PSO算法的基本思想利用生物学家Heppner的生物群体模型,模拟鸟类觅食过程。鸟类飞行过程相互交流,当一个鸟飞向栖息地时,其他鸟儿也会跟着飞向栖息地。

2. 粒子群优化算法数学模型

PSO理想化规则如下:
1)飞离最近的个体,以避免碰撞;
2)飞向栖息地;
3)飞向群体的中心,避免离群。

3. 粒子群更新公式

1)粒子飞行校正图:
image
2) 粒子更新公式:
速度更新公式:

\[v_{i}^{t+1} = v_{i}^{t} + C_1r_1(p_{ib}^{t}-p_{i}^{t})+C_2r_2(p_{gb}^{t}-p_{i}^{t}) \]

位置更新公式:

\[p_{i}^{t+1} = p_{i}^{t} + v_{i}^{t+1} \]

3. 粒子群优化算法流程图

image



这篇关于粒子群算法-PSO的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程