实验二 K-近邻算法及应用

2021/5/21 20:27:13

本文主要是介绍实验二 K-近邻算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

实验二 K-近邻算法及应用

作业信息

博客班级 博客班级链接
作业要求 作业要求链接
作业目标 理解K-近邻算法原理,实现K近邻算法,学会构建kd树
学号 3180701125

一、实验目的

  1. 理解K-近邻算法原理,能实现算法K近邻算法;
  2. 掌握常见的距离度量方法;
  3. 掌握K近邻树实现算法;
  4. 针对特定应用场景及数据,能应用K近邻解决实际问题。

二、实验内容

  1. 实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
  2. 实现K近邻树算法;
  3. 针对iris数据集,应用sklearn的K近邻算法进行类别预测。
  4. 针对iris数据集,编制程序使用K近邻树进行类别预测。

三、实验报告要求

  1. 对照实验内容,撰写实验过程、算法及测试结果;

  2. 代码规范化:命名规则、注释;

  3. 分析核心算法的复杂度;

  4. 查阅文献,讨论K近邻的优缺点;

  5. 举例说明K近邻的应用场景。

实验过程及结果

距离度量

import math
from itertools import combinations
  • p = 1 曼哈顿距离
  • p = 2 欧氏距离
  • p = inf 闵式距离minkowski_distance
# p = 2, 计算欧式距离
def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]
    if len(x) == len(y) and len(x) > 1: # 同一维度且维度大于一计算距离
        sum = 0
        for i in range(len(x)):
            sum += math.pow(abs(x[i] - y[i]), p)
        return math.pow(sum, 1 / p)# 开平方
    else:
        return 0
# 用于计算距离的数据
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
# x1, x2
for i in range(1, 5):
    # 调用上面所编写的距离函数L(x,c,p)计算x1分别和x2、x3的距离
    r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
    print(min(zip(r.values(), r.keys())))

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
# data
iris = load_iris() # 导入鸢尾花数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 定义每列的名字
# data = np.array(df.iloc[:100, [0, 1, -1]])
df # 输出上述所获取的数据表

# 绘图
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

data = np.array(df.iloc[:100, [0, 1, -1]])
# 取出前一百行的第一、二和最后一列数据
X, y = data[:,:-1], data[:,-1] # X,y获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 随机划分训练集和测试集
# 定义模型
class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2):
        """
        parameter: n_neighbors 临近点个数
        parameter: p 距离度量
        """
        self.n = n_neighbors
        self.p = p
        self.X_train = X_train
        self.y_train = y_train

    def predict(self, X):
        # 取出n个点
        knn_list = []
        for i in range(self.n):
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            knn_list.append((dist, self.y_train[i]))
        for i in range(self.n, len(self.X_train)):
            max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            if knn_list[max_index][0] > dist:
                knn_list[max_index] = (dist, self.y_train[i])
        # 统计
        knn = [k[-1] for k in knn_list]
        count_pairs = Counter(knn)
        max_count = sorted(count_pairs, key=lambda x: x)[-1]
        return max_count

    def score(self, X_test, y_test):
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)
clf = KNN(X_train, y_train) # 调用上面建立模型进行计算
clf.score(X_test, y_test) # 计算正确率

test_point = [6.0, 3.0] # 测试数据
print('Test Point: {}'.format(clf.predict(test_point)))

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

调用scikitlearn自带的包实现K-近邻算法

from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)

clf_sk.score(X_test, y_test)

sklearn.neighbors.KNeighborsClassifier

  • n_neighbors: 临近点个数
  • p: 距离度量
  • algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
  • weights: 确定近邻的权重

kd树

# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split  # 整数(进行分割维度的序号)
        self.left = left  # 该结点分割超平面左子空间构成的kd-tree
        self.right = right  # 该结点分割超平面右子空间构成的kd-tree


class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据维度

        def CreateNode(split, data_set):  # 按第split维划分数据集exset创建KdNode
            if not data_set:  # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
            # data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2  # //为Python中的整数除法
            median = data_set[split_pos]  # 中位数分割点
            split_next = (split + 1) % k  # cycle coordinates
            # 递归的创建kd树
            return KdNode(
                median,
                split,
                CreateNode(split_next, data_set[:split_pos]),  # 创建左子树
                CreateNode(split_next, data_set[split_pos + 1:]),
            )  # 创建右子树

        self.root = CreateNode(0, data)  # 从第0维分量开始构建kd树,返回根节点

    # KDTree的前序遍历


def preorder(root):
    print(root.dom_elt)
    if root.left:  # 节点不为空
        preorder(root.left)
    if root.right:
        preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")


def find_nearest(tree, point):
    k = len(point)  # 数据维度

    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0] * k, float("inf"), 0)  # python中用float("inf")和float("-inf")表示正负
        nodes_visited = 1
        s = kd_node.split  # 进行分割的维度
        pivot = kd_node.dom_elt  # 进行分割的“轴”
        if target[s] <= pivot[s]:  # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node = kd_node.left  # 下一个访问节点为左子树根节点
            further_node = kd_node.right  # 同时记录下右子树
        else:  # 目标离右子树更近
            nearer_node = kd_node.right  # 下一个访问节点为右子树根节点
            further_node = kd_node.left
        temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域
        nearest = temp1.nearest_point  # 以此叶结点作为“当前最近点”
        dist = temp1.nearest_dist  # 更新最近距离
        nodes_visited += temp1.nodes_visited
        if dist < max_dist:
            max_dist = dist  # 最近点将在以目标点为球心,max_dist为半径的超球体内
        temp_dist = abs(pivot[s] - target[s])  # 第s维上目标点与分割超平面的距离
        if max_dist < temp_dist:  # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited)  # 不相交则可以直接返回,不用继续判断
        #----------------------------------------------------------------------
        # 计算目标点与分割点的欧氏距离
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
        if temp_dist < dist:  # 如果“更近”
            nearest = pivot  # 更新最近点
            dist = temp_dist  # 更新最近距离
            max_dist = dist  # 更新超球体半径
        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist)
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point  # 更新最近点
            dist = temp2.nearest_dist  # 更新最近距离
        return result(nearest, dist, nodes_visited)

    return travel(tree.root, point, float("inf"))  # 从根节点开始递归
data = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]]
kd = KdTree(data)
preorder(kd.root)

from time import perf_counter
from random import random


# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]


# 产生n个k维随机向量
def random_points(k, n):
    return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3, 4.5])
print(ret)

N = 400000
t0 = perf_counter()
kd2 = KdTree(random_points(3, N))  # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1, 0.5, 0.8])  # 四十万个样本点中寻找离目标最近的点
t1 = perf_counter()
print("time: ", t1 - t0, "s")
print(ret2)

实验小结

K-近邻法是基本且简单的分类与回归方法,其基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的k个最近邻训练实例点,然后利用这k个训练实例点的类的多数来预测输入实例点的类。

K-近邻算法优缺点:

优点:

  1. 简单,易于理解,易于实现,无需估计参数。

  2. 训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集训练一个模型,然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。

缺点:

  1. 计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。
  2. 对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。

K-近邻算法应用场景
主要应用于不太复杂的分类问题中,因为该算法比较消耗计算资源,故一般用于处理数据维度比较小的场景中。



这篇关于实验二 K-近邻算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程