python 读取大文本文件并存入numpy时过于费时的问题及猜测
2021/6/2 1:21:01
本文主要是介绍python 读取大文本文件并存入numpy时过于费时的问题及猜测,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
因需要读取大文本文件(约有1,300,000行,40兆),并简单处理存入numpy数组中,运行过程中发现随读取数据的增加,耗费时间显著增加,稍作修改后运行速度显著提升,不解,记之,希望大家帮忙解惑。
初步猜测(未验证):在原始代码中对numpy数组进行了vstack,而这个过程可能对已有数组进行了类似遍历的操作,才会出现随数组中数据增加产生时间上的显著增加。
1.原始代码
此代码在前期运行较快,在运行接近4,500行左右时,速度开始逐步变慢,最后花了很长时间也没能运行出结果,不知是何种原因。
def readTXT1(txt_file, separator='\t'): """ 读取单行文本数据(x y z i(or classification)) :param txt_file: 待读取的文本 :param separator: 待读取的文本中的分割符,如空格或制表符 :return: 返回array数组,一行为一个数据 """ point = np.array([]) with open(txt_file, 'r') as file: for line in file: point_tmp = line.split(separator) point_tmp = [x.strip() for x in point_tmp if x.strip() != ''] point_tmp = list(map(float, point_tmp)) point_one = np.array([point_tmp[0], point_tmp[1], point_tmp[2], point_tmp[3]]) if np.shape(point)[0] > 0: point = np.vstack((point, point_one)) else: point = np.array([point_one]) print('% ', txt_file, 'has ', np.shape(point), 'points') return point
2.调整后代码
调整后先将数据存入list中,最后将list转换为array,此方案运行十分流畅,不足半分钟就已经完成读取与转化。相比原始代码只是少了一个判断和一个初始化array,但感觉问题应该不是出在此处,怀疑原始方案运行慢是因为叠置vstack。感觉只有在vstack过程中对已有数组进行了类似遍历的操作,才会出现随数组中数据增加产生时间上的显著增加。
def readTXT2(txt_file, separator='\t'): """ 读取单行文本数据(x y z i(or classification)) :param txt_file: 待读取的文本 :param separator: 待读取的文本中的分割符,如空格或制表符 :return: 返回array数组,一行为一个数据 """ all_points = [] with open(txt_file, 'r') as file: for line in file: point_tmp = line.split(separator) point_tmp = [x.strip() for x in point_tmp if x.strip() != ''] point_tmp = list(map(float, point_tmp)) all_points.append(point_tmp[0:4]) print('list:', len(all_points)) point = np.array(all_points) print('% ', txt_file, 'has ', np.shape(point), 'points') return point
这篇关于python 读取大文本文件并存入numpy时过于费时的问题及猜测的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-20Python编程入门指南
- 2024-12-20Python编程基础与进阶
- 2024-12-19Python基础编程教程
- 2024-12-19python 文件的后缀名是什么 怎么运行一个python文件?-icode9专业技术文章分享
- 2024-12-19使用python 把docx转为pdf文件有哪些方法?-icode9专业技术文章分享
- 2024-12-19python怎么更换换pip的源镜像?-icode9专业技术文章分享
- 2024-12-19Python资料:新手入门的全面指南
- 2024-12-19Python股票自动化交易实战入门教程
- 2024-12-19Python股票自动化交易入门教程
- 2024-12-18Python量化入门教程:轻松掌握量化交易基础知识