Python随机波动率(SV)模型对标普500指数时间序列波动性预测

2021/6/4 1:22:12

本文主要是介绍Python随机波动率(SV)模型对标普500指数时间序列波动性预测,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

原文链接:http://tecdat.cn/?p=22546 

原文出处:拓端数据部落公众号

 

资产价格具有随时间变化的波动性(逐日收益率的方差)。在某些时期,收益率是高度变化的,而在其他时期则非常平稳。随机波动率模型用一个潜在的波动率变量来模拟这种情况,该变量被建模为随机过程。下面的模型与 No-U-Turn Sampler 论文中描述的模型相似,Hoffman (2011) p21。

这里,r是每日收益率序列,s是潜在的对数波动率过程。

 

建立模型

首先,我们加载标普500指数的每日收益率。

  1.    
  2.   returns = (pm.get_data("SP500.csv"))
  3.   returns[:5]

正如你所看到的,波动性似乎随着时间的推移有很大的变化,但集中在某些时间段。在2500-3000个时间点附近,你可以看到2009年的金融风暴。

 

  1.    
  2.   ax.plot(returns)

指定模型。

  1.    
  2.    
  3.    
  4.   GaussianRandomWalk('s', hape=len(returns))
  5.   nu = Exponential( .1)
  6.   r = StudentT( pm.math.exp(-2*s),
  7.   obs=returns)

 

拟合模型

对于这个模型,最大后验(Maximum A Posteriori,MAP)概率估计具有无限的密度。然而,NUTS给出了正确的后验。

  1.   pm.sample(tune=2000
  2.   Auto-assigning NUTS sampler...

 

 

plot(trace['s']);

 

观察一段时间内的收益率,并叠加估计的标准差,我们可以看到该模型是如何拟合一段时间内的波动率的。

  1.   plot(returns)
  2.   plot(exp(trace[s]);

 np.exp(trace[s])

参考文献

  1. Hoffman & Gelman. (2011). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.


最受欢迎的见解

1.HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率

2.WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

3.波动率的实现:ARCH模型与HAR-RV模型

4.R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

5.使用R语言随机波动模型SV处理时间序列中的随机波动率

6.R语言多元COPULA GARCH 模型时间序列预测

7.R语言基于ARMA-GARCH过程的VAR拟合和预测

8.R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

9.R语言对S&P500股票指数进行ARIMA + GARCH交易策略



这篇关于Python随机波动率(SV)模型对标普500指数时间序列波动性预测的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程