ML之LoR&DT&RF:基于LoR&DT(CART)&RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测)
2021/6/15 20:22:13
本文主要是介绍ML之LoR&DT&RF:基于LoR&DT(CART)&RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
ML之LoR&DT&RF:基于LoR&DT(CART)&RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测)
目录
输出结果
设计思路
核心代码
输出结果
0、数据集
after LabelEncoder
1、LoR算法
LoR_model_GSCV.grid_scores_: [mean: 0.77012, std: 0.01349, params: {'C': 0.001, 'penalty': 'l1'}, mean: 0.86936, std: 0.01035, params: {'C': 0.001, 'penalty': 'l2'}, mean: 0.91229, std: 0.01022, params: {'C': 0.01, 'penalty': 'l1'}, mean: 0.91045, std: 0.00831, params: {'C': 0.01, 'penalty': 'l2'}, mean: 0.94707, std: 0.00853, params: {'C': 0.1, 'penalty': 'l1'}, mean: 0.93599, std: 0.00841, params: {'C': 0.1, 'penalty': 'l2'}, mean: 0.95984, std: 0.00670, params: {'C': 1, 'penalty': 'l1'}, mean: 0.94953, std: 0.00790, params: {'C': 1, 'penalty': 'l2'}, mean: 0.96553, std: 0.00531, params: {'C': 10, 'penalty': 'l1'}, mean: 0.95722, std: 0.00559, params: {'C': 10, 'penalty': 'l2'}, mean: 0.96646, std: 0.00516, params: {'C': 100, 'penalty': 'l1'}, mean: 0.96599, std: 0.00528, params: {'C': 100, 'penalty': 'l2'}, mean: 0.96661, std: 0.00513, params: {'C': 1000, 'penalty': 'l1'}, mean: 0.96646, std: 0.00564, params: {'C': 1000, 'penalty': 'l2'}] LoR_model_GSCV.best_score_: 0.96661024773042 LoR_model_GSCV.best_params_: {'C': 1000, 'penalty': 'l1'} LoR_model_GSCV.best_score_: 0.96661024773042 LoR_model_GSCV.best_params_: {'C': 1000, 'penalty': 'l1'} LoR_model_GSCV_auc_roc: 0.9739644970414202
2、DT算法
3、RF算法
RFC_model_GSCV grid_scores_: [mean: 0.99938, std: 0.00075, params: {'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 10}, mean: 0.99954, std: 0.00070, params: {'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 20}, …… mean: 0.97784, std: 0.01071, params: {'max_features': 'log2', 'min_samples_leaf': 80, 'n_estimators': 20}, mean: 0.98215, std: 0.00703, params: {'max_features': 'log2', 'min_samples_leaf': 80, 'n_estimators': 30}, mean: 0.98169, std: 0.00550, params: {'max_features': 'log2', 'min_samples_leaf': 90, 'n_estimators': 80}, mean: 0.98169, std: 0.00801, params: {'max_features': 'log2', 'min_samples_leaf': 90, 'n_estimators': 90}] RFC_model_GSCV best_score_: 0.9998461301738729 RFC_model_GSCV best_params_: {'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 50} RFC_model_GSCV_auc_roc: 1.0
设计思路
后期更新……
核心代码
后期更新……
RF tuned_parameters = {'min_samples_leaf': range(10,100,10), 'n_estimators' : range(10,100,10), 'max_features': ['auto','sqrt','log2'] } RFC_model_GSCV = GridSearchCV(RFC_model, tuned_parameters,cv=10) RFC_model_GSCV.fit(X_train,y_train) endtime = time.clock() print ('RFC_model_GSCV Training time:',endtime - starttime) print('RFC_model_GSCV grid_scores_:', RFC_model_GSCV.grid_scores_) print('RFC_model_GSCV best_score_:', RFC_model_GSCV.best_score_) print('RFC_model_GSCV best_params_:', RFC_model_GSCV.best_params_) y_prob = RFC_model_GSCV.predict_proba(X_test)[:,1] y_pred = np.where(y_prob > 0.5, 1, 0) RFC_model_GSCV.score(X_test, y_pred)
这篇关于ML之LoR&DT&RF:基于LoR&DT(CART)&RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享