工具篇:介绍几个好用的guava工具类
2021/6/16 10:23:30
本文主要是介绍工具篇:介绍几个好用的guava工具类,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
前言
平时我们都会封装一些处理缓存或其他的小工具。但每个人都封装一次,重复造轮子,有点费时间。有没有一些好的工具库推荐-guava。guava是谷歌基于java封装好的开源库,它的性能、实用性,比我们自己造的轮子更好,毕竟谷歌出品,下面介绍下几个常用的guava工具类
- LoadingCache(本地缓存)
- Multimap 和 Multiset
- BiMap
- Table(表)
- Sets和Maps(交并差)
- EventBus(事件)
- StopWatch(秒表)
- Files(文件操作)
- RateLimiter(限流器)
- Guava Retry
关注公众号,一起交流,微信搜一搜: 潜行前行
guava的maven配置引入
<dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>27.0-jre</version> </dependency>
LoadingCache
- LoadingCache 在实际场景中有着非常广泛的使用,通常情况下如果遇到需要大量时间计算或者缓存值的场景,就应当将值保存到缓存中。LoadingCache 和 ConcurrentMap 类似,但又不尽相同。最大的不同是 ConcurrentMap 会永久的存储所有的元素值直到他们被显示的移除,但是 LoadingCache 会为了保持内存使用合理会根据配置自动将过期值移除
- 通常情况下,Guava caching 适用于以下场景:
- 花费一些内存来换取速度
- 一些 key 会被不止一次被调用
- 缓存内容有限,不会超过内存空间的值,Guava caches 不会存储内容到文件或者到服务器外部,如果有此类需求考虑使用 Memcached, Redis
- LoadingCache 不能缓存 null key
- CacheBuilder 构造 LoadingCache 参数介绍
CacheBuilder 方法参数 | 描述 |
---|---|
initialCapacity(int initialCapacity) | 缓存池的初始大小 |
concurrencyLevel(int concurrencyLevel) | 设置并发数 |
maximumSize(long maximumSize) | 缓存池大小,在缓存项接近该大小时, Guava开始回收旧的缓存项 |
weakValues() | 设置value的存储引用是虚引用 |
softValues() | 设置value的存储引用是软引用 |
expireAfterWrite(long duration, TimeUnit unit) | 设置时间对象没有被写则对象从内存中删除(在另外的线程里面不定期维护) |
expireAfterAccess(long duration, TimeUnit unit) | 设置时间对象没有被读/写访问则对象从内存中删除(在另外的线程里面不定期维护) |
refreshAfterWrite(long duration, TimeUnit unit) | 和expireAfterWrite类似,不过不立马移除key,而是在下次更新时刷新,这段时间可能会返回旧值 |
removalListener( RemovalListener<? super K1, ? super V1> listener) | 监听器,缓存项被移除时会触发 |
build(CacheLoader<? super K1, V1> loader) | 当数据不存在时,则使用loader加载数据 |
- LoadingCache
V get(K key)
, 获取缓存值,如果键不存在值,将调用CacheLoader的load方法加载新值到该键中 - 示例
LoadingCache<Integer,Long> cacheMap = CacheBuilder.newBuilder().initialCapacity(10) .concurrencyLevel(10) .expireAfterAccess(Duration.ofSeconds(10)) .weakValues() .recordStats() .removalListener(new RemovalListener<Integer,Long>(){ @Override public void onRemoval(RemovalNotification<Integer, Long> notification) { System.out.println(notification.getValue()); } }) .build(new CacheLoader<Integer,Long>(){ @Override public Long load(Integer key) throws Exception { return System.currentTimeMillis(); } }); cacheMap.get(1);
Multimap 和 MultiSet
- Multimap的特点其实就是可以包含有几个重复Key的value,可以put进入多个不同value但是相同的key,但是又不会覆盖前面的内容
- 示例
//Multimap: key-value key可以重复,value也可重复 Multimap<String, String> multimap = ArrayListMultimap.create(); multimap.put("csc","1"); multimap.put("lwl","1"); multimap.put("csc","1"); multimap.put("lwl","one"); System.out.println(multimap.get("csc")); System.out.println(multimap.get("lwl")); --------------------------- [1, 1] [1, one]
- MultiSet 有一个相对有用的场景,就是跟踪每种对象的数量,所以可以用来进行数量统计
- 示例
//MultiSet: 无序+可重复 count()方法获取单词的次数 增强了可读性+操作简单 Multiset<String> set = HashMultiset.create(); set.add("csc"); set.add("lwl"); set.add("csc"); System.out.println(set.size()); System.out.println(set.count("csc")); --------------------------- 3 2
BiMap
- BiMap的键必须唯一,值也必须唯一,可以实现value和key互转
- 示例
BiMap<Integer,String> biMap = HashBiMap.create(); biMap.put(1,"lwl"); biMap.put(2,"csc"); BiMap<String, Integer> map = biMap.inverse(); // value和key互转 map.forEach((v, k) -> System.out.println(v + "-" + k));
Table
Table<R,C,V> table = HashBasedTable.create();
,由泛型可以看出,table由双主键R(行),C(列)共同决定,V是存储值- 新增数据:
table.put(R,C,V)
- 获取数据:
V v = table.get(R,C)
- 遍历数据:
Set<R> set = table.rowKeySet(); Set<C> set = table.columnKeySet();
- 示例
// 双键的Map Map--> Table-->rowKey+columnKey+value Table<String, String, Integer> tables = HashBasedTable.create(); tables.put("csc", "lwl", 1); //row+column对应的value System.out.println(tables.get("csc","lwl"));
Sets和Maps
// 不可变集合的创建 ImmutableList<String> iList = ImmutableList.of("csc", "lwl"); ImmutableSet<String> iSet = ImmutableSet.of("csc", "lwl"); ImmutableMap<String, String> iMap = ImmutableMap.of("csc", "hello", "lwl", "world");
set的交集, 并集, 差集
HashSet setA = newHashSet(1, 2, 3, 4, 5); HashSet setB = newHashSet(4, 5, 6, 7, 8); //并集 SetView union = Sets.union(setA, setB); //差集 setA-setB SetView difference = Sets.difference(setA, setB); //交集 SetView intersection = Sets.intersection(setA, setB);
map的交集,并集,差集
HashMap<String, Integer> mapA = Maps.newHashMap(); mapA.put("a", 1);mapA.put("b", 2);mapA.put("c", 3); HashMap<String, Integer> mapB = Maps.newHashMap(); mapB.put("b", 20);mapB.put("c", 3);mapB.put("d", 4); MapDifference<String, Integer> mapDifference = Maps.difference(mapA, mapB); //mapA 和 mapB 相同的 entry System.out.println(mapDifference.entriesInCommon()); //mapA 和 mapB key相同的value不同的 entry System.out.println(mapDifference.entriesDiffering()); //只存在 mapA 的 entry System.out.println(mapDifference.entriesOnlyOnLeft()); //只存在 mapB 的 entry System.out.println(mapDifference.entriesOnlyOnRight());; -------------结果------------- {c=3} {b=(2, 20)} {a=1} {d=4}
EventBus
- EventBus是Guava的事件处理机制,是设计模式中的观察者模式(生产/消费者编程模型)的优雅实现。对于事件监听和发布订阅模式
- EventBus内部实现原理不复杂,EventBus内部会维护一个Multimap<Class<?>, Subscriber> map,key就代表消息对应的类(不同消息不同类,区分不同的消息)、value是一个Subscriber,Subscriber其实就是对应消息处理者。如果有消息发布就去这个map里面找到这个消息对应的Subscriber去执行
- 使用示例
@Data @AllArgsConstructor public class OrderMessage { String message; } //使用 @Subscribe 注解,表明使用dealWithEvent 方法处理 OrderMessage类型对应的消息 //可以注解多个方法,不同的方法 处理不同的对象消息 public class OrderEventListener { @Subscribe public void dealWithEvent(OrderMessage event) { System.out.println("内容:" + event.getMessage()); } } ------------------------------------- // new AsyncEventBus(String identifier, Executor executor); EventBus eventBus = new EventBus("lwl"); eventBus.register(new OrderEventListener()); // 发布消息 eventBus.post(new OrderMessage("csc"));
StopWatch
Stopwatch stopwatch = Stopwatch.createStarted(); for(int i=0; i<100000; i++){ // do some thing } long nanos = stopwatch.elapsed(TimeUnit.MILLISECONDS); System.out.println("逻辑代码运行耗时:"+nanos);
Files文件操作
- 数据写入
File newFile = new File("D:/text.txt"); Files.write("this is a test".getBytes(), newFile); //再次写入会把之前的内容冲掉 Files.write("csc".getBytes(), newFile); //追加写 Files.append("lwl", newFile, Charset.defaultCharset());
- 文本数据读取
File newFile = new File("E:/text.txt"); List<String> lines = Files.readLines(newFile, Charset.defaultCharset());
- 其他操作
方法 | 描述 |
---|---|
Files.copy(File from, File to) | 复制文件 |
Files.deleteDirectoryContents(File directory) | 删除文件夹下的内容(包括文件与子文件夹) |
Files.deleteRecursively(File file) | 删除文件或者文件夹 |
Files.move(File from, File to) | 移动文件 |
Files.touch(File file) | 创建或者更新文件的时间戳 |
Files.getFileExtension(String file) | 获得文件的扩展名 |
Files.getNameWithoutExtension(String file) | 获得不带扩展名的文件名 |
Files.map(File file, MapMode mode) | 获取内存映射buffer |
RateLimiter
//RateLimiter 构造方法,每秒限流permitsPerSecond public static RateLimiter create(double permitsPerSecond) //每秒限流 permitsPerSecond,warmupPeriod 则是数据初始预热时间,从第一次acquire 或 tryAcquire 执行开时计算 public static RateLimiter create(double permitsPerSecond, Duration warmupPeriod) //获取一个令牌,阻塞,返回阻塞时间 public double acquire() //获取 permits 个令牌,阻塞,返回阻塞时间 public double acquire(int permits) //获取一个令牌,超时返回 public boolean tryAcquire(Duration timeout) 获取 permits 个令牌,超时返回 public boolean tryAcquire(int permits, Duration timeout)
- 使用示例
RateLimiter limiter = RateLimiter.create(2, 3, TimeUnit.SECONDS); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); System.out.println("get one permit cost time: " + limiter.acquire(1) + "s"); --------------- 结果 ------------------------- get one permit cost time: 0.0s get one permit cost time: 1.331672s get one permit cost time: 0.998392s get one permit cost time: 0.666014s get one permit cost time: 0.498514s get one permit cost time: 0.498918s get one permit cost time: 0.499151s get one permit cost time: 0.488548s
- 因为RateLimiter滞后处理的,所以第一次无论取多少都是零秒
- 可以看到前四次的acquire,花了三秒时间去预热数据,在第五次到第八次的acquire耗时趋于平滑
Guava Retry
- maven引入
<dependency> <groupId>com.github.rholder</groupId> <artifactId>guava-retrying</artifactId> <version>2.0.0</version> </dependency>
- RetryerBuilder 构造方法
RetryerBuilder方法 | 描述 |
---|---|
withRetryListener | 重试监听器 |
withWaitStrategy | 失败后重试间隔时间 |
withStopStrategy | 停止策略 |
withBlockStrategy | 阻塞策略BlockStrategy |
withAttemptTimeLimiter | 执行时间限制策略 |
retryIfException | 发生异常,则重试 |
retryIfRuntimeException | 发生RuntimeException异常,则重试 |
retryIfExceptionOfType(Class<? extends Throwable> ex) | 发生ex异常,则重试 |
retryIfException(Predicate<Throwable> exceptionPredicate) | 对异常判断,是否重试 |
retryIfResult(Predicate<V> resultPredicate) | 对返回结果判断,是否重试 |
Retryer<Boolean> retryer = RetryerBuilder.<Boolean>newBuilder() .retryIfException() .retryIfResult(Predicates.equalTo(false)) .withAttemptTimeLimiter(AttemptTimeLimiters.fixedTimeLimit(1, TimeUnit.SECONDS)) .withStopStrategy(StopStrategies.stopAfterAttempt(5)) .build(); //Retryer调用 retryer.call(() -> true);
- spring也有对应的重试机制,相关文章可以看看重试框架Guava-Retry和spring-Retry
欢迎指正文中错误(故事纯属虚构,如有雷同纯属巧合)
参考文章
- Google guava工具类的介绍和使用
- 重试框架Guava-Retry和spring-Retry
- https://zhuanlan.zhihu.com/p/60979444
这篇关于工具篇:介绍几个好用的guava工具类的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-04百万架构师第六课:设计模式:策略模式及模板模式
- 2025-01-04百万架构师第七课:设计模式:装饰器模式及观察者模式
- 2025-01-04适用于企业管理的协作工具API推荐
- 2025-01-04挑战16:被限流的CPU
- 2025-01-03企业在选择工具时,如何评估其背后的技术团队
- 2025-01-03Angular中打造动态多彩标签组件的方法
- 2025-01-03Flask过时了吗?FastAPI才是未来?
- 2025-01-0311个每位开发者都应知道的免费实用网站
- 2025-01-03从REST到GraphQL:为什么以及我是如何完成转型的
- 2025-01-03掌握RAG:从单次问答到连续对话