LRU缓存算法
2021/6/22 9:26:45
本文主要是介绍LRU缓存算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
文章目录
- 1、什么是缓存
- 2、LRU的实现
- 3、代码
- leetcode 146. LRU 缓存机制
1、什么是缓存
这里说的缓存是一种广义的概念,在计算机存储层次结构中,低一层的存储器都可以看做是高一层的缓存。比如Cache是内存的缓存,内存是硬盘的缓存,硬盘是网络的缓存等等。
缓存可以有效地解决存储器性能与容量的这对矛盾,但绝非看上去那么简单。如果缓存算法设计不当,非但不能提高访问速度,反而会使系统变得更慢。
从本质上来说,缓存之所以有效是因为程序和数据的局部性(locality)。程序会按固定的顺序执行,数据会存放在连续的内存空间并反复读写。这些特点使得我们可以缓存那些经常用到的数据,从而提高读写速度。
缓存的大小是固定的,它应该只保存最常被访问的那些数据。然而未来不可预知,我们只能从过去的访问序列做预测,于是就有了各种各样的缓存替换策略。本文介绍一种简单的缓存策略,称为最近最少使用(LRU,Least Recently Used)算法。
2、LRU的实现
我们以内存访问为例解释缓存的工作原理。假设缓存的大小固定,初始状态为空。每发生一次读内存操作,首先查找待读取的数据是否存在于缓存中,若是,则缓存命中,返回数据;若否,则缓存未命中,从内存中读取数据,并把该数据添加到缓存中。向缓存添加数据时,如果缓存已满,则需要删除访问时间最早的那条数据,这种更新缓存的方法就叫做LRU。
实现LRU时,我们需要关注它的读性能和写性能,理想的LRU应该可以在O(1)的时间内读取一条数据或更新一条数据,也就是说读写的时间复杂度都是O(1)。
此时很容易想到使用HashMap,根据数据的键访问数据可以达到O(1)的速度。但是更新缓存的速度却无法达到O(1),因为需要确定哪一条数据的访问时间最早,这需要遍历所有缓存才能找到。
因此,我们需要一种既按访问时间排序,又能在常数时间内随机访问的数据结构。
这可以通过HashMap+双向链表实现。HashMap保证通过key访问数据的时间为O(1),双向链表则按照访问时间的顺序依次穿过每个数据。之所以选择双向链表而不是单链表,是为了可以从中间任意结点修改链表结构,而不必从头结点开始遍历。
如下图所示,黑色部分为HashMap的结构,红色箭头则是双向链表的正向连接(逆向连接未画出)。可以清晰地看到,数据的访问顺序是1->3->5->6->10。我们只需要在每次访问过后改变链表的连接顺序即可。
3、代码
leetcode 146. LRU 缓存机制
leetcode 146. LRU 缓存机制
设计和实现一个 LRU (最近最少使用) 缓存机制 ,实现 LRUCache 类:
- LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。 - void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
提示:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000 0 <= key <= 3000 0 <= value <= 104 最多调用 3 * 104 次 get 和 put
代码:
/* 题目要求O(1)完成查询和插入,需要使用hash链表,而C语言优秀库uthash底层本身就是用双向链表实现的hash * 至于题目中说的当达到容量时,先删除最久未使用的数据,这个最久未使用就在双向链表的表头,可以自己写一些add测试下 * 综上分析,无需一个 表示使用次数的变量,而是利用uthash底层的数据结构就可以实现 */ typedef struct { int key; int val; UT_hash_handle hh; } LRUCache; LRUCache *g_usr = NULL; int g_size; LRUCache* lRUCacheCreate(int capacity) { g_size = capacity; return g_usr; } int lRUCacheGet(LRUCache* obj, int key) { LRUCache *cur_usr = NULL; HASH_FIND_INT(g_usr, &key, cur_usr); if (cur_usr != NULL) { // get存在的key,则该key被使用了一次,因此需要先删后入,满足LRU HASH_DEL(g_usr, cur_usr); HASH_ADD_INT(g_usr, key, cur_usr); return cur_usr->val; } return -1; } void lRUCachePut(LRUCache* obj, int key, int value) { LRUCache *cur_usr = NULL, *next_usr = NULL; HASH_FIND_INT(g_usr, &key, cur_usr); if (cur_usr != NULL) { HASH_DEL(g_usr, cur_usr); cur_usr->key = key; cur_usr->val = value; HASH_ADD_INT(g_usr, key, cur_usr); } else { // 新插入 int cnt = HASH_COUNT(g_usr); if (cnt == g_size) { HASH_ITER(hh, g_usr, cur_usr, next_usr) { HASH_DEL(g_usr, cur_usr); free(cur_usr); break; } } LRUCache *new_usr = (LRUCache *)malloc(sizeof(LRUCache)); new_usr->key = key; new_usr->val = value; HASH_ADD_INT(g_usr, key, new_usr); } return; } void lRUCacheFree(LRUCache* obj) { LRUCache *cur_usr = NULL, *next_usr = NULL; HASH_ITER(hh, g_usr, cur_usr, next_usr) { HASH_DEL(g_usr, cur_usr); free(cur_usr); } } /** * Your LRUCache struct will be instantiated and called as such: * LRUCache* obj = lRUCacheCreate(capacity); * int param_1 = lRUCacheGet(obj, key); * lRUCachePut(obj, key, value); * lRUCacheFree(obj); */
这篇关于LRU缓存算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-27本地多文件上传的简单教程
- 2024-11-27低代码开发:初学者的简单教程
- 2024-11-27如何轻松掌握拖动排序功能
- 2024-11-27JWT入门教程:从零开始理解与实现
- 2024-11-27安能物流 All in TiDB 背后的故事与成果
- 2024-11-27低代码开发入门教程:轻松上手指南
- 2024-11-27如何轻松入门低代码应用开发
- 2024-11-27ESLint开发入门教程:从零开始使用ESLint
- 2024-11-27Npm 发布和配置入门指南
- 2024-11-27低代码应用课程:新手入门指南